941 resultados para Biology, Biostatistics|Hydrology
Resumo:
Modiolarca tumida (Hanley, 1843) is a member of the sub-family Crenellinae (Mytilidae). The preferred habitat of the species is the test of certain ascidians. The shell is dorsally flattened, which prevents it from cutting into the test during dorso-ventral contraction of the byssal retractors. The use of the byssus enables it to surround itself completely with host tissue. Adoption of the feeding posture involves the anterior-posterior contraction of the byssal retractors, which elevates the posterior margin above the host's surface using the anterior margin as the fulcrum against the host. Modiolarca tumida are attracted by the tunicin of the host, a process probably facilitated by the host's feeding currents. The smallest individuals are found round the oral aperture. Colonization of other parts of the host may result from surface migration as M. tumida can be highly mobile, crawling by means of the very extensible foot. It is during this process that individuals may be swept away in local currents and be forced to adopt a free-living existence.
Resumo:
The purpose of this study is to survey the use of networks and network-based methods in systems biology. This study starts with an introduction to graph theory and basic measures allowing to quantify structural properties of networks. Then, the authors present important network classes and gene networks as well as methods for their analysis. In the last part of this study, the authors review approaches that aim at analysing the functional organisation of gene networks and the use of networks in medicine. In addition to this, the authors advocate networks as a systematic approach to general problems in systems biology, because networks are capable of assuming multiple roles that are very beneficial connecting experimental data with a functional interpretation in biological terms.
Resumo:
In this paper we discuss the dualism of gene networks and their role in systems biology. We argue that gene networks ( 1) can serve as a conceptual framework, forming a fundamental level of a phenomenological description, and ( 2) are a means to represent and analyze data. The latter point does not only allow a systems analysis but is even amenable for a direct approach to study biological function. Here we focus on the clarity of our main arguments and conceptual meaning of gene networks, rather than the causal inference of gene networks from data. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 379-391 DOI: 10.1002/wsbm.134
Resumo:
Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011
Resumo:
1. This paper examines the interaction between the wood mouse, Apodemus sylvaticus L., and the intestinal nematode, Heligmosomoides polygyrus Dujardin, using data collected at Tollymore Park Forest, Co. Down, Northern Ireland, between November 1978 and July 1981.
Resumo:
Type I galactosemia results from reduced galactose 1-phosphate uridylyltransferase (GALT) activity. Signs of disease include damage to the eyes, brain, liver, and ovaries. However, the exact nature and severity of the pathology depends on the mutation(s) in the patient's genes and his/her environment. Considerable enzymological and structural knowledge has been accumulated and this provides a basis to explain, at a biochemical level, impairment in the enzyme in the more than 230 disease-associated variants, which have been described. The most common variant, Q188R, occurs close to the active site and the dimer interface. The substitution probably disrupts both UDP-sugar binding and homodimer stability. Other alterations, for example K285N, occur close to the surface of the enzyme and most likely affect the folding and stability of the enzyme. There are a number of unanswered questions in the field, which require resolution. These include the possibility that the main enzymes of galactose metabolism form a supramolecular complex and the need for a high resolution crystal structure of human GALT. (C) 2011 IUBMB IUBMB Life, 63(11): 949-954, 2011