930 resultados para B-Riesz Potential
Resumo:
We investigate, analytically and numerically, families of bright solitons in a system of two linearly coupled nonlinear Schrodinger/Gross-Pitaevskii equations, describing two Bose-Einstein condensates trapped in an asymmetric double-well potential, in particular, when the scattering lengths in the condensates have arbitrary magnitudes and opposite signs. The solitons are found to exist everywhere where they are permitted by the dispersion law. Using the Vakhitov-Kolokolov criterion and numerical methods, we show that, except for small regions in the parameter space, the solitons are stable to small perturbations. Some of them feature self-trapping of almost all the atoms in the condensate with no atomic interaction or weak repulsion is coupled to the self-attractive condensate. An unusual bifurcation is found, when the soliton bifurcates from the zero solution with vanishing amplitude and width simultaneously diverging but at a finite number of atoms in the soliton. By means of numerical simulations, it is found that, depending on values of the parameters and the initial perturbation, unstable solitons either give rise to breathers or completely break down into incoherent waves (radiation). A version of the model with the self-attraction in both components, which applies to the description of dual-core fibers in nonlinear optics, is considered too, and new results are obtained for this much studied system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
CaBi4Ti4O15 (CBTi144) thin films were evaluated for use as lead-free thin-film piezoelectrics in microelectromechanical systems. The films were grown by the polymeric precursor method on (100)Pt/Ti/SiO2/Si substrates. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. The P-r and E-c were 14 mu C/cm(2) and 64 kV/cm, respectively, for a maximum applied field of 400 kV/cm. The domain structure was investigated by piezoresponse force microscopy. The film has a piezoelectric coefficient, d(33), equal to 60 pm/V and a current density of 0.7 mA/cm(2).
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.
Resumo:
The coumarin antibiotics are potent inhibitors of DNA replication whose target is the enzyme DNA gyrase, an ATP-dependent bacterial type II topoisomerase. The coumarin drugs inhibit gyrase action by competitive binding to the ATP-binding site of DNA gyrase B protein. The production of new biologically active products has stimulated additional studies on coumarin-gyrase interactions. In this regard, a 4.2 kDa peptide mimic of DNA gyrase B protein from Escherichia coli has been designed and synthesized. The peptide sequence includes the natural fragment 131-146 (coumarin resistance-determining region) and a segment containing the gyrase-DNA interaction region (positions 753-770). The peptide mimic binds to novobiocin (K-a = 1.4 +/- 0.3 x 10(5) m(-1)), plasmid (K-a = 1.6 +/- 0.5 x 10(6) m(-1)) and ATP (K-a = 1.9 f 0.4 x 10(3) m(-1)), results previously found with the intact B protein. on the other hand, the binding to novobiocin was reduced when a mutation of Arg-136 to Leu-136 was introduced, a change previously found in the DNA gyrase B protein from several coumarin-resistant clinical isolates of Escherichia coLi. In contrast, the binding to plasmid and to ATP was not altered. These results suggest that synthetic peptides designed in a similar way to that described here could be used as mimics of DNA gyrase in studies which seek a better understanding of the ATP, as well as coumarin, binding to the gyrase and also the mechanism of action of this class of antibacterial drugs. Copyright (C) 2004 European Peptide Society and John Wiley Sons, Ltd.
Resumo:
Energy generation is needed in São Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO2 emission. The total CO2 released is 3.34 x 10(5) t/yr without recycling. and is 1.25 x 10(5) t/yr with a recycling program. Most of the CO2 comes from plastics and paper production. Economic aspects could probably favor Incineration with energy production as the best option. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper discuss the qualitative use of electrostatic force microscopy to study the grain boundary active potential barrier present in dense SnO2-based polycrystalline semiconductors. The effect of heat treatment under rich- and poor-oxygen atmospheres was evaluated while especially considering the number of active barriers at grain boundary regions. The results show that the number of active barriers decrease after heat treatment in an oxygen-poor atmosphere and increase after heat treatment in oxygen-rich atmospheres. The observed effect was explained by considering the presence of oxidized transition metal elements segregated at grain boundary regions which leads to the p-type character of this region, in agreement with the atomic barrier formation mechanism in metal oxide varistor systems.
Resumo:
Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex 1), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50 = 62.06 mu M) through a non-competitive type of inhibition (K-I = 8.1 mu M). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Human rabies tansmitted by bats has acquired greater epidemiologic relevance in various Latin American countries, just when cases transmitted by dogs have decreased. Concern has been heightened by reports of increased rates of bats biting humans in villlages in the Amazonian region of Brazil. The aim of the present work was to estimate the potential force of infection (per capita rate at which susceptible individuals acquire infection) of human rabies transmitted by the common vampire bat if the rabies virus were to be introduced to a colony of bats close to a village with a high rate of human bites. The potential force of infection could be then used to anticipate the size of a rabies outbreak in control programs. We present an estimator of potential incidence, adapted from models for malaria. To obtain some of the parameters for the equation, a cross-sectional survey was conducted in Mina Nova, a village of gold prospectors in the Amazonian region of Brazil with high rates of bates biting humans. Bats were captured near dwellings and sent to the Rabies Diagnostic Laboratory at the Center for Control of Zoonoses (São Paulo, Brazil) to be examined. To estimate the force of infection, a hypothetical rabies outbreak among bats was simulated using the actual data obtained in the study area. of 129 people interviewed, 23.33% had been attacked by a vampire bat during the year prior to the study, with an average of 2.8 bites per attacked person. Males (29.41%) were attacked more often than females (11.36%); also, adults (29.35%) were attacked more often than children (8.33%). None of the 12 bats captured in Mina Nova tested positive for rabies, but the force of infection for a hypothetical outbreak was estimated to be 0.0096 per person per year. This risk represents 0.96 cases per 100 area residents, giving an incidence of 1.54 cases of bat-transimtted buman rabies per year in the village of Mina Nova (160 inhabitants). The estimated risk is comparable with what has been observed in similar Brazilian villages.
Resumo:
This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background. Despite improvements in small bowel transplantation (SBTx), early referral of patients with irreversible intestinal failure (IF) remains a major obstacle. In this study we evaluated the demand for SBTx among seven surgical pediatric centers located at least 200 km from our center.Methods. From 1997 to 2001, 640 patients have been treated for neonatal diseases, including 248 who underwent a minor or major intestinal resection. Twenty-four patients with major resections presented with short gut syndrome, requiring total parenteral nutrition (TPN). The greatest demand was in postsurgical neonates with necrotizing enterocolitis, gastroschiesis, onphalocoeles, or midgut volvulus, and in three adults with postradiotherapy arteritis (n = 2) and mesenteric vein thromboses (n = 1). The median length of residual bowel after resection was 20 to 30 cm, without an ileocecal valve. Four patients were referred for SBTx evaluation; three died while awaiting a donor; 20 were not referred, among whom 14 died of TPN complications.Results. Approximately 62 children per year require nutritional support for IF, most of whom develop complications related to TPN. Because many patients who are TPN-dependent develop complications, we believe that early referral would reduce mortality.Conclusions. Greater medical awareness about the feasibility of SBTx procedures and earlier referral may improve results and quality of life after transplant.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD 147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.