937 resultados para Aquaculture, Cytochrome Oxidase I, Ostrea Edulis, Outbreeding Depression, Population Structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of the cytochrome (CYT) P-450 mixed-function oxidase (MFO) in the biotransformation of hexachlorobenzene (HCB) was investigated, since in vivo interaction between this enzyme and chemical is very probable. HCB is a type I substrate with (Fe('3+)) CYT P-450 isozymes present in untreated, b-naphthoflavone (BNF) and phenobarbital (PB) induced rat liver microsomes. HCB dependent and saturable type I binding titrations yield spectral dissociation constants (K(,s)) of 180 and 83 uM for the isozymes present in untreated and PB induced microsomes, respectively. Purified CYT P-450b, the major isozyme induced by PB, produces HCB dependent and saturable type I spectra with a K(,s) of 0.38 uM.^ CYT P-450 mediated reductive dehalogenation occurs in microsomes and purified/reconstituted MFO systems and produces pentachlorobenzene (PCB) as the initial and major metabolite under both aerobic and anaerobic conditions. In microsomal reactions secondary metabolism of PCB occurs in the presence of oxygen. Pentachlorophenol (PCP) is produced only in aerobic reactions with PB induced microsomes with a concomitant decrease in PCB production. PCP is not detected in aerobic reactions with BNF induced microsomes, although PCB production is decreased compared to anaerobic conditions. A reaction scheme for the production of phenolic metabolities from PCB is deduced.^ CYT P-450 dependent and NADPH independent modes of PCB production occur with purified/reconstituted MFO systems and are consistent with dehalogenation pathways observed with microsomal experiments. The NADPH independent production of PCB requires native microsomal or purified MFO protein components and may be the result of nucleophilic displacement of a chlorine atom from HCB mediated or coupled with redox active functions (primary, secondary, tertiary and quarternary structures) of the proteins. CYT P-450 dependent production of PCB from HCB is isozyme dependent: CYT P-450c = CYT P-450d > CYT P-450a > CYT 450b. The low apparent specific activity may be due to non-optimal reconstitution conditions (e.g., isozyme choice and requirement of other microsomal elecron transport components) and secondary metabolism of PCB and the phenols derived from PCB. CYT P-450 mediated dehalogenation may be catalyzed through attack, by the iron oxene (postulated intermediate of CYT P-450 monooxygenations), at the chlorines of HCB instead of the aromatic nucleus. (Abstract shortened with permission of author.) ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic α-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or cytochrome c6 (cyt c6) and photosystem I (PSI) isolated from wild type and the different mutants were analyzed using crosslinking techniques and flash absorption spectroscopy. The K23Q change drastically affected crosslinking of pc to PSI and electron transfer from pc and cyt c6 to PSI. The corresponding second order rate constants for binding of pc and cyt c6 were reduced by a factor of 13 and 7, respectively. Smaller effects were observed for mutations K16Q and K30Q, whereas in K12P the binding was not changed relative to wild type. None of the mutations affected the half-life of the microsecond electron transfer performed within the intermolecular complex between the donors and PSI. The fact that these single amino acid changes within the N-terminal domain of PsaF have different effects on the electron transfer rate constants and dissociation constants for both electron donors suggests the existence of a rather precise recognition site for pc and cyt c6 that leads to the stabilization of the final electron transfer complex through electrostatic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glutamic acid 286 (E286; Escherichia coli cytochrome bo3 numbering) in subunit I of the respiratory heme-copper oxidases is highly conserved and has been suggested to be involved in proton translocation. We report a technique of enzyme reconstitution that yields essentially unidirectionally oriented cytochrome bo3 vesicles in which proton translocation can be measured. Such experiments are not feasible in the E286Q mutant due to strong inhibition of respiration, but this is not the case for the mutants E286D and E286C. The reconstituted E286D mutant enzyme readily translocates protons whereas E286C does not. Loss of proton translocation in the D135N mutant, but not in D135E or D407N, also is verified using proteoliposomes. Stopped-flow experiments show that the peroxy intermediate accumulates in the reaction of the E286Q and E286C mutant enzymes with O2. We conclude that an acidic function of the 286 locus is essential for the mechanism of proton translocation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytochrome c oxidase catalyzes the reduction of oxygen to water that is accompanied by pumping of four protons across the mitochondrial or bacterial membrane. Triggered by the results of recent x-ray crystallographic analyses, published data concerning the coupling of individual electron transfer steps to proton pumping are reanalyzed: Conversion of the conventional oxoferryl intermediate F to the fully oxidized form O is connected to pumping of only one proton. Most likely one proton is already pumped during the double reduction of O, and only three protons during conversion of the “peroxy” forms P to O via the oxoferryl form F. Based on the available structural, spectroscopic, and mutagenesis data, a detailed mechanistic model, carefully considering electrostatic interactions, is presented. In this model, each of the four reductions of heme a during the catalytic cycle is coupled to the uptake of one proton via the D-pathway. These protons, but never more than two, are temporarily stored in the regions of the heme a and a3 propionates and are driven to the outside (“pumped”) by electrostatic repulsion from protons entering the active site during turnover. The first proton is pumped by uptake of one proton via the K-pathway during reduction, the second and third proton during the P → F transition when the D-pathway and the active site become directly connected, and the fourth one upon conversion of F to O. Atomic structures are assigned to each intermediate including F′ with an alternative route to O.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determined that a pigeon cytochrome c-derived peptide, p43–58, possesses two anchor residues, 46 and 54, for binding with the I-Ab molecule that are compatible to the position 1 (P1) and position 9 (P9) of the core region in the major histocompatibility complex (MHC) class II binding peptides, respectively. In the present study to analyze each binding site between P1 and P9 of p43–58 to either I-Ab or T cell antigen receptor (TCR), we investigated T cell responses to a series of peptides (P2K, P3K, P4K, P5K, P6K, P7K, and P8E) that sequentially substituted charged amino acid residues for the residues at P2 to P8 of p43–58. T cells from C57BL/10 (I-Ab) mice immunized with P4K or P6K did not mount appreciable proliferative responses to the immunogens, but those primed with other peptides (P2K, P3K, P5K, P7K, and P8E) showed substantial responses in an immunogen-specific manner. It was demonstrated by binding studies that P1 and P9 functioned as main anchors and P4 and P6 functioned as secondary anchors to I-Ab. Analyses of Vβ usage of T cell lines specific for these analogs suggested that P8 interacts with the complementarity-determining region 1 (CDR1)/CDR2 of the TCR β chain. Furthermore, sequencing of the TCR on T cell hybridomas specific for these analogs indicated that P5 interacts with the CDR3 of the TCR β chain. The present findings are consistent with the three-dimensional structure of the trimolecular complex that has been reported for TCR/peptide/MHC class I molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The “peroxy” intermediate (P form) of bovine cytochrome c oxidase was prepared by reaction of the two-electron reduced mixed-valence CO complex with 18O2 after photolytic removal of CO. The water present in the reaction mixture was recovered and analyzed for 18O enrichment by mass spectrometry. It was found that approximately one oxygen atom (18O) per one equivalent of the P form was present in the bulk water. The data show that the oxygen–oxygen dioxygen bond is already broken in the P intermediate and that one oxygen atom can be readily released or exchanged with the oxygen of the solvent water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of the phagocyte NADPH oxidase complex requires the assembly of the cytosolic factors p47PHOX, p67PHOX, p40PHOX, and Rac1 or Rac2, with the membrane-bound cytochrome b558. Whereas the interaction of p47PHOX with cytochrome b558 is well established, an interaction between p67PHOX and cytochrome b558 has never been investigated. We report here a direct interaction between p67PHOX and cytochrome b558. First, labeled p67PHOX recognizes a 91-kDa band in specific granules from a normal patient but not from a cytochrome b558-deficient patient. Second, p67PHOX binds to cytochrome b558 that has been bound to nitrocellulose. Third, GTP-p67PHOX bound to glutathione agarose is able to pull down cytochrome b558. Rac1-GTP or Rac1-GDP increased the binding of p67PHOX to cytochrome b558, suggesting that at least one of the oxidase-related functions of Rac1 is to promote the interaction between p67PHOX and cytochrome b558.