935 resultados para Amp Receptor Protein
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Resumo:
The effects of short- and long-term exposure of cells to elevated cyclic adenosine monophosphate (c-AMP), using dibutyryl-c-AMP, 8-bromo-c-AMP, cholera toxin or forskolin, or cyclic guanosine monophosphate (c-GMP), using dibutyryl-c-GMP or 8-bromo-c-GMP, on the activity and expression of the noradrenaline transporter (NAT) were examined. Short- or long-term c-GMP elevation had no effects on H-3-noradrenaline uptake by rat PC12 phaeochromocytoma cells or human SK-N-SH-SY5Y neuroblastoma cells. Short-term c-AMP elevation (for 17 min experiment duration) caused a decrease in H-3-noradrenaline uptake by PC12 cells, but had no effects on SK-N-SH-SY5Y cells or COS-7 cells transfected with human or rat NAT cDNA. c-AMP did not affect H-3-nisoxetine binding to PC12 cells. Long-term (24 h) exposure to elevated c-AMP levels caused a decrease in H-3-noradrenaline uptake and NAT mRNA in PC12 cells, but had no effects on SK-N-SH-SY5Y cells and caused a small increase in H-3-noradrenaline uptake in COS-7 cells heterologously expressing rat or human NAT. Hence, c-AMP, but not c-GMP, causes a cell type-dependent reduction in NAT activity after short-term exposure and a reduction in NAT expression after long-term exposure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna 1 p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions.
Resumo:
The effect of FBP on folate bio-availability depends on its environment. The FBP of whole WPC enhances bioavailability of folates more than does purified FBP and its efficacy might be even greater when lipids are removed from the WPC. FBP polymerises and folate release from the polymer is found to be slower than that from the monomer. FBP has a role also as a folate receptor at cell surfaces and in this role folate binding increases polymerisation of FBP attached to lipid membranes.
Resumo:
Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.
Resumo:
Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.
Resumo:
Previous studies in our laboratory have shown that the pleiotropic cytokine leukemia inhibitory factor (LIF) inhibits neointimal formation and the development and progression of atherosclerotic and restenotic lesions in a rabbit model of disease. The present study demonstrates an upregulation of both the LIF receptor (LIFR)-α subunit and the signal transducing subunit gp130 following endothelial denudation of the carotid artery by balloon catheter. Continuous infusion of LIF (30 μg/kg/day) resulted in the downregulation of LIFR-a in injured arteries in vivo. Similarly, smooth muscle cells in vitro treated with LIF exhibited a time-dependent reduction in LIFR-a protein expression and the subsequent reduction in transcription of the TIMP-1 gene. However, in the presence of an intact endothelium, LIFR-a was upregulated in response to LIF, and accordingly the downstream induction of iNOS expression was also increased. Thus, LIF exerts more potent antiatherogenic effects in the vasculature when the endothelium is intact.
Resumo:
There is evidence that ATM plays a wider role in intracellular signalling in addition to DNA damage recognition and cell cycle control, In this report we show that activation of the EGF receptor is defective in ataxia-telangiectasia (A-T) cells and that sustained stimulation of cells with EGF downregulates ATM protein in control cells but not in A-T cells expressing mutant protein, Concomitant with the downregulation of ATM, DNA-binding activity of the transcription factor Spl decreased in controls after EGF treatment but increased from a lower basal level in A-T cells to that in untreated control cells, Mutation in two Spl consensus sequences in the ATM promoter reduced markedly the capacity of the promoter to support luciferase activity in a reporter assay. Overexpression of anti-sense ATM cDNA in control cells decreased the;basal level of Spl, which in turn was increased by subsequent treatment of cells with EGF, similar to that observed in,A-T cells. On the other hand full-length ATM cDNA increased the basal level of Spl binding in A-T cells, and in response to EGF Spl binding decreased, confirming that this is an ATR I-dependent process. Contrary to that observed in control cells there was no radiation-induced change in ATM protein in EGF-treated A-T cells and likewise no alteration in Spl binding activity. The results demonstrate that EGF-induced downregulation of ATM (mutant) protein in A-T cells is defective and this appears to be due to less efficient EGFR activation and abnormal Spl regulation.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
skeletal disease. Bone remodeling is initiated by osteoclastic resorption followed by osteoblastic formation of new bone. Receptor activator of nuclear factor KB ligand (RANKL) is a newly described regulator of osteoclast formation and function, the activity of which appears to be a balance between interaction with its receptor RANK and with an antagonist binding protein osteoprotegerin (OPG). Therefore, we have examined the relationship between the expression of RANKL, RANK, and OPG and indices of bone structure and turnover in human cancellous bone from the proximal femur. Bone samples were obtained from individuals with osteoarthritis (OA) at joint replacement surgery and from autopsy controls. Histomorphometric analysis of these samples showed that eroded surface (ES/BS) and osteoid surface (OS/BS) were positively associated in both control (p < 0.001) and OA (p < 0.02), indicating that the processes of bone resorption and bone formation remain coupled in OA, as they are in controls. RANKL, OPG, and RANK messenger RNA, (mRNA) were abundant in human cancellous bone, with significant differences between control and OA individuals. In coplotting the molecular and histomorphometric data, strong associations were found between the ratio of RANKL/OPG mRNA and the indices of bone turnover (RANKL/OPG vs. ES/BS: r = 0.93, p < 0.001; RANKL/OPG vs. OS/BS: r = 0.80, p < 0.001). These relationships were not evident in trabecular bone from severe OA, suggesting that bone turnover may be regulated differently in this disease. We propose that the effective concentration of RANKL is related causally to bone turnover.