979 resultados para Ameloblastoma. Adenomatoid odontogenic tumor. Bone morphogenetic proteins. Immunohistochemistry
Resumo:
PURPOSE: To report the first case of choroidal schwannoma in a patient affected by PTEN hamartoma tumor syndrome (PHTS) and investigate the molecular involvement of the phosphatase and tensin homolog (PTEN) and neurofibromin 2 (NF2) genes in this rare intraocular tumor. DESIGN: Observational case report. PARTICIPANT: A 10-year-old girl diagnosed with PHTS. METHODS: The enucleated specimen underwent histologic, immunohistochemical, and transmission electronic microscopy. The expression of PTEN and NF2 and their protein products were evaluated by reverse transcription-polymerase chain reaction and immunohistochemistry. Somatic mutations of PTEN and NF2, as well as allelic loss, were investigated by direct sequencing of DNA extracted from the tumor. PTEN epigenetic silencing was investigated by pyrosequencing. MAIN OUTCOME MEASURES: Histopathologic and molecular characterization of a choroidal pigmented schwannoma. RESULTS: Histopathologic, immunohistochemical, and electron microscopic analysis demonstrated features consistent with a pigmented cellular schwannoma of the choroid. We found no loss of heterozygosity at the genomic level for the PTEN germline mutation and no promoter hypermethylation or other somatic intragenic mutations. However, we observed an approximate 40% reduction of PTEN expression at both the mRNA and the protein level, indicating that the tumor was nonetheless functionally deficient for PTEN. Although DNA sequencing of NF2 failed to identify any pathologic variants, its expression was abolished within the tumor. CONCLUSIONS: We report the first description of a pigmented choroidal schwannoma in the context of a PHTS. This rare tumor showed a unique combination of reduction of PTEN and absence of NF2 expression.
Resumo:
Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR.
Resumo:
Plasma cells represent the end stage of B-cell development and play a key role in providing an efficient antibody response, but they are also involved in numerous pathologies. Here we show that CD93, a receptor expressed during early B-cell development, is reinduced during plasma-cell differentiation. High CD93/CD138 expression was restricted to antibody-secreting cells both in T-dependent and T-independent responses as naive, memory, and germinal-center B cells remained CD93-negative. CD93 was expressed on (pre)plasmablasts/plasma cells, including long-lived plasma cells that showed decreased cell cycle activity, high levels of isotype-switched Ig secretion, and modification of the transcriptional network. T-independent and T-dependent stimuli led to re-expression of CD93 via 2 pathways, either before or after CD138 or Blimp-1 expression. Strikingly, while humoral immune responses initially proceeded normally, CD93-deficient mice were unable to maintain antibody secretion and bone-marrow plasma-cell numbers, demonstrating that CD93 is important for the maintenance of plasma cells in bone marrow niches.
Resumo:
MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.
Resumo:
We have previously characterized an infectious mouse mammary tumor virus [(MMTV(SW)] which induces a strong superantigen response in vivo. Here we describe the isolation and characterization of MMTV(C4) which was derived from milk of mice implanted with hyperplastic alveolar nodules. MMTV(C4) stimulates V beta 2 expressing T cells after local injection in vivo. Comparison with known open reading frame (orf) sequences revealed high homology to Mtv-6, an endogenous virus interacting with V beta 3-expressing T cells. The carboxyl-terminal amino acids were, however, altered. High homology including the carboxyl-terminal orf amino acids were found with MMTV(C3H-K). We show here that MMTV(C3H-K) has lost its superantigen function. Sequence comparisons permitted the characterization of few key amino acids which could be important for T cell receptor interaction and superantigen processing.
Resumo:
Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks. During the last 2 weeks, mice were treated daily with CRB-15 or an IgG2a control antibody. Intestinal inflammation, disease severity, and bone parameters were evaluated at days 14 and 21. CRB-15 improved survival, early weight loss, and colitis clinical score, although colon damage and inflammation were prevented in only half the survivors. CRB-15 also delayed loss of femur bone mineral density and trabecular microarchitecture. Bone loss was characterized by decreased bone formation, but increased bone marrow osteoclast progenitors and osteoclast numbers on bone surfaces. CRB-15 prevented the suppression of osteoblastic markers of bone formation, and reduced osteoclast progenitors at day 14, but not later. However, by day 21, CRB-15 decreased tumor necrosis factor α and increased IL-10 expression in bone, paralleling a reduction of osteoclasts. These results delineate the role of IL-15 on the systemic and skeletal manifestations of chronic colitis and provide a proof-of-concept for future therapeutic developments.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
BACKGROUND: Low p27 and high Skp2 immunoreactivity are associated with a poor prognosis and other poor prognostic features including resistant phenotypes and antiestrogen drug resistance. We investigated these proteins in two International Breast Cancer Study Group trials studying node-negative early breast cancer. PATIENTS AND METHODS: Trial VIII compared chemotherapy followed by goserelin with either modality alone in premenopausal patients. Trial IX compared chemotherapy followed by tamoxifen with tamoxifen alone in postmenopausal patients. Central Pathology Office assessed p27 and Skp2 expression in the primary tumor by immunohistochemistry among 1631 (60%) trial patients. RESULTS: p27 and Skp2 were inversely related; 13% of tumors expressed low p27 and high Skp2. Low p27 and high Skp2 were associated with unfavorable prognostic factors including larger size and higher grade tumors, absence of estrogen receptor and progesterone receptor, human epidermal growth factor receptor 2 overexpression and high Ki-67 (each P < 0.05). Low p27 and high Skp2 were not associated with disease-free survival (P = 0.42 and P = 0.48, respectively). The relative effects of chemo-endocrine versus endocrine therapy were similar regardless of p27 or Skp2. CONCLUSIONS: We confirm the association of low p27 and high Skp2 with other poor prognostic features, but found no predictive or prognostic value, and therefore do not recommend routine determination of p27 and Skp2 for node-negative breast cancer.
Resumo:
The main objective of the study was to examine the biotransformation of the anticancer drug imatinib in target cells by incubating it with oxidoreductases expressed in tumor cells. The second objective was to obtain an in silico prediction of the potential activity of imatinib metabolites. An in vitro enzyme kinetic study was performed with cDNA expressed human oxidoreductases and LC-MS/MS analysis. The kinetic parameters (Km and Vmax) were determined for six metabolites. A molecular modeling approach was used to dock these metabolites to the target Abl or Bcr-Abl kinases. CYP3A4 isozyme showed the broadest metabolic capacity, whereas CYP1A1, CYP1B1 and FMO3 isozymes biotransformed imatinib with a high intrinsic clearance. The predicted binding modes for the metabolites to Abl were comparable to that of the parent drug, suggesting potential activity. These findings indicate that CYP1A1 and CYP1B1, which are known to be overexpressed in a wide range of tumors, are involved in the biotransformation of imatinib. They could play a role in imatinib disposition in the targeted stem, progenitor and differentiated cancer cells, with a possible contribution of the metabolites toward the activity of the drug.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
Purpose: We have previously demonstrated that mutations in the FAM161A gene, encoding a protein with unknown function and no similarities with other characterized sequences, cause autosomal recessive retinitis pigmentosa (RP). The purpose of this work is to investigate the functional role of FAM161A within the retina and its relationship with other proteins involved in RP. Methods: The subcellular localization of FAM161A in the retina was assessed by immunohistochemistry of retinal sections and dissociated photoreceptors from mice, which were stained using antibodies against FAM161A and antibodies against cilium markers. The function of FAM161A was further assessed in ciliated mammalian cell lines by expression of recombinant FAM161A with various fusion tags. The binary interaction between FAM161A and a collection of ciliary and ciliopathy-associated proteins was analyzed using a yeast two-hybrid assay. The results obtained with this technique were validated using independent protein-protein interaction assays (GST-pull downs, co-transfection and co-immunoprecipitation). Results: Native FAM161A localized at the connecting cilium of photoreceptor cells, as demonstrated by immunofluorescence in both dissociated photoreceptors and retinal sections of mice. More specifically, co-staining with markers for ciliary sub-structures (RPGRIP1L, Centrin, RP1, GT335) demonstrated that FAM161A decorated the basal body and the very apical part of the connecting cilium. Upon overexpression in ciliated cultured mammalian cells, FAM161A localized to the ciliary basal body. Yeast two-hybrid analysis of the binary interaction of FAM161A and an array of ciliary proteins revealed the direct interaction of FAM161A with three proteins of which the cognate genes are mutated in retinal ciliopathies. The confirmation of these interactions using different biochemical assays is currently in progress. Conclusions: FAM161A is a ciliary basal body protein of the photoreceptor connecting cilium, rendering the associated RP as a novel retinal ciliopathy. The confined expression of FAM161A in the retina and the direct interaction of FAM161A with other retinal ciliopathy-associated proteins may explain the retinal phenotype of this specific subset of mechanistically and phenotypically connected retinal disorders.
Resumo:
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Resumo:
Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.