919 resultados para Ambipolar transistors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the construction of hybrid permeable-base transistors, in vertical architecture, using tris(8-hydroxyquinoline) aluminum as emitter, a thin gold layer as base, and n-type silicon as collector. These transistors present high common-base current gain, can be operated at low driving voltages, and allow high current density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An organic integrated pixel consisting of an organic light-emitting diode driven by an organic thin-film field-effect transistor (OTFT) was fabricated by a full evaporation method oil a transparent glass substrate. The OTFT was designed as a top-gate Structure, and the insulator is composed of a double-layer polymer of Nylon 6 and Teflon to lower the operation voltage and the gate-leakage current, and improve the device stability. The field-effect mobility of the OTFT is more than 0.5 cm(2) V-1 s(-1), and the on/off ratio is larger than 10(3). The brightness of the pixel reached as large as 300 cd m(-2) at a driving current of 50 mu A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of multilayer microstructures, for example for organic field-effect transistors, using metal transfer printing (MTP) is demonstrated. The Figure shows a two-layer gold structure produced by MTP. Since MTP is a purely additive technique, in which mechanical adhesion acts as the patterning driving force, it is considered an attractive approach to reel-to-reel processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Lorenz-type system of nonlinear differential equations is proposed. Unlike the original Lorenz system, where the chaotic dynamics remain confined to the positive half-space with respect to the Z state variable due to a limiting threshold effect, the proposed system enables bipolar swing of this state variable. In addition, the classical set of parameters (a, b, c) controlling the behavior of the Lorenz system are reduced to a single parameter, namely a. Two possible modes of operation are admitted by the system; switching between these two modes results in the creation of a complex butterfly chaotic attractor. Numerical simulations and results from an experimental setup are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on the application of numerical atomic basis sets in studies of the structural, electronic and transport properties of silicon nanowire structures from first-principles within the framework of Density Functional Theory. First we critically examine the applied methodology and then offer predictions regarding the transport properties and realisation of silicon nanowire devices. The performance of numerical atomic orbitals is benchmarked against calculations performed with plane waves basis sets. After establishing the convergence of total energy and electronic structure calculations with increasing basis size we have shown that their quality greatly improves with the optimisation of the contraction for a fixed basis size. The double zeta polarised basis offers a reasonable approximation to study structural and electronic properties and transferability exists between various nanowire structures. This is most important to reduce the computational cost. The impact of basis sets on transport properties in silicon nanowires with oxygen and dopant impurities have also been studied. It is found that whilst transmission features quantitatively converge with increasing contraction there is a weaker dependence on basis set for the mean free path; the double zeta polarised basis offers a good compromise whereas the single zeta basis set yields qualitatively reasonable results. Studying the transport properties of nanowire-based transistor setups with p+-n-p+ and p+-i-p+ doping profiles it is shown that charge self-consistency affects the I-V characteristics more significantly than the basis set choice. It is predicted that such ultrascaled (3 nm length) transistors would show degraded performance due to relatively high source-drain tunnelling currents. Finally, it is shown the hole mobility of Si nanowires nominally doped with boron decreases monotonically with decreasing width at fixed doping density and increasing dopant concentration. Significant mobility variations are identified which can explain experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are hollow tubes of sp2-hybridised carbon with diameters of the order of nanometres. Due to their unique physical properties, which include ballistic transport and high mechanical strength, they are of significant interest for technological applications. The electronic properties of CNTs are of particular interest for use as gas sensors, interconnect materials in the semi-conductor industry and as the channel material in CNT based field effect transistors. The primary difficulty associated with the use of CNTs in electronic applications is the inability to control electronic properties at the growth stage; as grown CNTs consist of a mixture of metallic and semi-conducting CNTs. Doping has the potential to solve this problem and is a focus of this thesis. Nitrogen-doped CNTs typically have defective structures; the usual hollow CNT structure is replaced by a series of compartments. Through density functional theory (DFT) calculations and experimental results, we propose an explanation for the defective structures obtained, based on the stronger binding of N to the growth catalyst in comparison to C. In real electronic devices, CNTs need to be contacted to metal, we generate the current-voltage (IV) characteristics of metal-contacted CNTs considering both the effect of dopants and the structure of the interface region on electronic properties. We find that substitutionally doped CNTs produce Ohmic contacts and that scattering at the interface is strongly influenced by structure. In addition, we consider the effect of the common vacancy defects on the electronic properties of large diameter CNTs. Defects increase scattering in the CNT, with the greatest scattering occurring for the largest defect (555777). We validate the independent scattering approximation for small diameter CNTs, which enables mean free paths in large diameter CNTs to be calculated, with a smaller mean free paths found for larger defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is now used in semiconductor fabrication lines to deposit nanometre-thin oxide films, and has thus enabled the introduction of high-permittivity dielectrics into the CMOS gate stack. With interest increasing in transistors based on high mobility substrates, such as GaAs, we are investigating the surface treatments that may improve the interface characteristics. We focus on incubation periods of ALD processes on III-V substrates. We have applied first principles Density Functional Theory (DFT) to investigate detailed chemistry of these early stages of growth, specifically substrate and ALD precursor interaction. We have modelled the ‘clean-up’ effect by which organometallic precursors: trimethylaluminium (TMA) or hafnium and titanium amides clean arsenic oxides off the GaAs surface before ALD growth of dielectric commences and similar effect on Si3N4 substrate. Our simulations show that ‘clean-up’ of an oxide film strongly depends on precursor ligand, its affinity to the oxide and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides (e.g. SiO2) to be cleaned-up. First principles study shows also that alkylamides are more susceptible to decomposition rather than migration on the oxide surface. This improved understanding of the chemical principles underlying ‘clean-up’ allows us to rationalize and predict which precursors will perform the reaction. The comparison is made between selection of metal chlorides, methyls and alkylamides precursors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD covers the development of planar inversion-mode and junctionless Al2O3/In0.53Ga0.47As metal-oxidesemiconductor field-effect transistors (MOSFETs). An implant activation anneal was developed for the formation of the source and drain (S/D) of the inversionmode MOSFET. Fabricated inversion-mode devices were used as test vehicles to investigate the impact of forming gas annealing (FGA) on device performance. Following FGA, the devices exhibited a subthreshold swing (SS) of 150mV/dec., an ION/IOFF of 104 and the transconductance, drive current and peak effective mobility increased by 29%, 25% and 15%, respectively. An alternative technique, based on the fitting of the measured full-gate capacitance vs gate voltage using a selfconsistent Poisson-Schrödinger solver, was developed to extract the trap energy profile across the full In0.53Ga0.47As bandgap and beyond. A multi-frequency inversion-charge pumping approach was proposed to (1) study the traps located at energy levels aligned with the In0.53Ga0.47As conduction band and (2) separate the trapped charge and mobile charge contributions. The analysis revealed an effective mobility (μeff) peaking at ~2850cm2/V.s for an inversion-charge density (Ninv) = 7*1011cm2 and rapidly decreasing to ~600cm2/V.s for Ninv = 1*1013 cm2, consistent with a μeff limited by surface roughness scattering. Atomic force microscopy measurements confirmed a large surface roughness of 1.95±0.28nm on the In0.53Ga0.47As channel caused by the S/D activation anneal. In order to circumvent the issue relative to S/D formation, a junctionless In0.53Ga0.47As device was developed. A digital etch was used to thin the In0.53Ga0.47As channel and investigate the impact of channel thickness (tInGaAs) on device performance. Scaling of the SS with tInGaAs was observed for tInGaAs going from 24 to 16nm, yielding a SS of 115mV/dec. for tInGaAs = 16nm. Flat-band μeff values of 2130 and 1975cm2/V.s were extracted on devices with tInGaAs of 24 and 20nm, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first piezoelectric potential gated hybrid field-effect transistors based on nanotubes and nanowires. The device consists of single-walled carbon nanotubes (SWNTs) on the bottom and crossed ZnO piezoelectric fine wire (PFW) on the top with an insulating layer between. Here, SWNTs serve as a carrier transport channel, and a single-crystal ZnO PFW acts as the power-free, contact-free gate or even an energy-harvesting component later on. The piezopotential created by an external force in the ZnO PFW is demonstrated to control the charge transport in the SWNT channel located underneath. The magnitude of the piezopotential in the PFW at a tensile strain of 0.05% is measured to be 0.4-0.6 V. The device is a unique coupling between the piezoelectric property of the ZnO PFW and the semiconductor performance of the SWNT with a full utilization of its mobility. The newly demonstrated device has potential applications as a strain sensor, force/pressure monitor, security trigger, and analog-signal touch screen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InAlN thin films and InAlN/GaN heterostructures have been intensively studied over recent years due to their applications in a variety of devices, including high electron mobility transistors (HEMTs). However, the quality of InAlN remains relatively poor with basic material and structural characteristics remain unclear.

Molecular beam epitaxy (MBE) is used to synthesize the materials for this research, as MBE is a widely used tool for semiconductor growth but has rarely been explored for InAlN growth. X-ray photoelectron spectroscopy (XPS) is used to determine the electronic and chemical characteristics of InAlN surfaces. This tool is used for the first time in application to MBE-grown InAlN and heterostructures for the characterization of surface oxides, the bare surface barrier height (BSBH), and valence band offsets (VBOs).

The surface properties of InAlN are studied in relation to surface oxide characteristics and formation. First, the native oxide compositions are studied. Then, methods enabling the effective removal of the native oxides are found. Finally, annealing is explored for the reliable growth of surface thermal oxides.

The bulk properties of InAlN films are studied. The unintentional compositional grading in InAlN during MBE growth is discovered and found to be affected by strain and relaxation. The optical characterization of InAlN using spectroscopy ellipsometry (SE) is also developed and reveals that a two-phase InAlN model applies to MBE-grown InAlN due to its natural formation of a nanocolumnar microstructure. The insertion of an AlN interlayer is found to mitigate the formation of this microstructure and increases mobility of whole structure by fivefold.

Finally, the synthesis and characterization of InAlN/GaN HEMT device structures are explored. The density and energy distribution of surface states are studied with relationships to surface chemical composition and surface oxide. The determination of the VBOs of InAlN/GaN structures with different In compositions are discussed at last.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.