976 resultados para Air traffic control, multiple remote tower, remote tower, PJ05, SESAR
Resumo:
Because higher-than-average turnover rates for nurses who work in remote and rural areas are the norm, the authors conducted a study to identify professional and personal factors that influenced rural nurses' decisions to resign. Using a mail survey, the authors gathered qualitative and quantitative data from nurses who had resigned from rural and remote areas in Queensland, Australia. Their findings, categorized into professional and rural influences, highlight the importance of work force planning strategies that capitalize on the positive aspects of rural and remote area practice, to retain nurses in nonmetropolitan areas.
Resumo:
The prevalence and risk factors associated with canine gastrointestinal parasitic zoonoses and the role of dogs in the mechanical transmission of human Ascaris infection was examined in three tea estates in Assam, India. Nearly all (99%) dogs harbored one or more zoonotic species of gastrointestinal parasites, with hookworm infection being most common (94%). Parasitic stages presumed to be host-specific for humans such as Ascaris spp. (31%), Trichuris trichiura (25%), and Isospora belli (2%) were also recovered from dog feces. A polymerase chain reaction-linked restriction fragment length polymorphism technique was used to differentiate the species of Ascaris eggs in dog feces. The results of this study demonstrate the role of the dog as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation by humans occurs.
Resumo:
Canine parasitic zoonoses pose a continuing public health problem, especially in developing countries and communities that are socioeconomically disadvantaged. Our study combined the use of conventional and molecular epidemic, logical tools to determine the role of dogs in transmission of gastrointestinal (GI) parasites such as hookworms, Giardia and Ascaris in a parasite endemic teagrowing community in northeast India. A highly sensitive and specific molecular tool was developed to detect and differentiate the zoonotic species of canine hookworm eggs directly from faeces. This allowed epidemiological screening of canine hookworm species in this community to be conducted with ease and accuracy. The zoonotic potential of canine Giardia was also investigated by characterising Giardia duodenalis recovered from humans and dogs living in the same locality and households at three different loci. Phylogenetic and epidemiological analysis provided compelling evidence to support the zoonotic transmission of canine Giardia. Molecular tools were also used to identify the species of Ascaris egg present in over 30% of dog faecal samples. The results demonstrated the role of dogs as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation practices exist. Our study demonstrated the usefulness of combining conventional and molecular parasitological and epidemiological tools to help solve unresolved relationships with regards to parasitic zoonoses.
Resumo:
Medication errors are a leading cause of unintended harm to patients in Australia and internationally. Research in this area has paid relatively little attention to the interactions between organisational factors and violations of procedures in producing errors, although violations have been found to increase the likelihood of these errors. This study investigated the role of organisational factors in contributing to violations by nurses when administering medications. Data were collected using a self-report questionnaire completed by 506 nurses working in either rural or remote areas in Queensland, Australia. This instrument was used to develop a path model wherein organisational variables predicted 21% of the variance in self-reported violations. Expectations of medical officers mediated the relationship between working conditions of nursing staff and violation behaviour.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
ACROSSnet: A suicide prevention and mental health website for rural and remote workers in Queensland
Resumo:
OBJECTIVE: The goal of this study was to estimate the associations between outdoor air pollution and cardiovascular hospital admissions for the elderly. DESIGN: Associations were assessed using the case-crossover method for seven cities: Auckland and Christchurch, New Zealand; and Brisbane, Canberra, Melbourne, Perth, and Sydney Australia. Results were combined across cities using a random-effects meta-analysis and stratified for two adult age groups: 15-64 years and >= 65 years of age (elderly). Pollutants considered were nitrogen dioxide, carbon monoxide, daily measures of particulate matter (PM) and ozone. Where multiple pollutant associations were found, a matched case-control analysis was used to identify the most consistent association. RESULTS: In the elderly, all pollutants except 03 were significantly associated with five categories or cardiovascular disease admissions. No associations were found for arrhythmia and stroke. For a 0.9-ppm increase in CO, there were significant increases in elderly hospital admissions for total cardiovascular disease (2.2%), all cardiac disease (2.8%), cardiac failure (6.0%), ischemic heart disease (2.3%), and myocardial infarction (2.9%). There was some heterogeneity between cities, possibly due to differences in humidity and the percentage of elderly people. In matched analyses, CO had the most consistent association. CONCLUSIONS. The results suggest that air pollution arising from common emission sources for CO, NO2, and PM (e.g., motor vehicle exhausts) has significant associations with adult cardiovascular hospital admissions, especially in the elderly, at air pollution concentrations below normal health guidelines. RELEVANCE TO CLINICAL AND PROFESSIONAL PRACTICE: Elderly populations in Australia need to be protected from air pollution arising from outdoor sources to reduce cardiovascular disease.
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objectives: The purpose of this study was to explore the clinical relevance of chronic exposure to ambient levels of traffic derived air pollution on the ocular surface. Methods: A panel study involving 55 volunteers was carried out in Sao Paulo, Brazil. We measured the mean individual levels of nitrogen dioxide (NO(2)) exposure for 7 days. All subjects answered the Ocular Symptom Disease Index (OSDI) and a symptoms inventory. Subsequently, subjects underwent Schirmer I test, biomicroscopy, vital staining and tear breakup time (TOUT) assessment. Subject`s mean daily exposure to NO(2) was categorized in quartiles. Statistical analysis was performed using one-way ANOVA, Tukey HSD and Chi-Square tests. Results: A dose-response pattern was detected between OSDI scores and NO(2) quartiles (p < 0.05). There was a significant association between NO(2) quartiles and reported ocular irritation (X(2) = 9.2, p < 0.05) and a significant negative association between TBUT and NO(2) exposure (p < 0.05, R = -0.316. Spearman`s correlation). There was a significant increase in the frequency of meibomitis in subjects exposed to higher levels of NO(2) (p < 0.05). Conclusions: Subjects exposed to higher levels of traffic derived air pollution reported more ocular discomfort symptoms and presented greater tear film instability, suggesting that the ocular discomfort symptoms and tear breakup time could be used as convenient bioindicators of the adverse health effects of traffic derived air pollution exposure. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.
Resumo:
Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.