975 resultados para AIR CO2 ENRICHMENT
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
Objectives Actigraphy can reliably assess sleep in healthy adults and be used to estimate total sleep time in suspected obstructive sleep apnoea (OSA) patients. We compared sleep quality for Continuous Positive Air Pressure (CPAP) treated OSA patients and controls, evaluating the impact of stopping CPAP for one night. Methods 11 men, aged 51–75 years (m = 65.6 years), compliant CPAP users, treated for 1–19 years (m = 7.8 years) wore Cambridge Neurotechnology Ltd actiwatches for one night while using CPAP and for one night sleeping without CPAP. A control group of 11 healthy men, aged 63–74 years (m = 64.1 years) slept normally whilst wearing an actiwatch. Subsequent daytime sleepiness was recorded using Karolinska sleepiness scores (KSS). Results Actimetry showed no significant differences between actual sleep time, sleep efficiency, sleep disturbance index or number of wake bouts when comparing OSA participants using CPAP, with controls; there was no difference in subsequent daytime sleepiness, control KSS = 4.21, OSA KSS = 4.17. Without CPAP there was no significant difference in sleep length or sleep onset latency compared with using CPAP, but there was a significant impact on sleep quality as shown by: increased sleep disturbance index from 7.9 to 13.8 [t(10) = 3.510, P < 0.05], decreased percent of actual sleep from 92.05% to 86.15% [t(10) = 3.51, P < 0.05], decreased sleep efficiency from 86.6% to 81% [t(10) = 2.204, P < 0.05] and increased number of wake bouts from 29 to 42.5 [t(10) = 3.877, P < 0.05]. Daytime sleepiness became significantly worse increasing from KSS 4.17 to 6.27 [t(10) = )4.96, P < 0.05]. Conclusion There was no disparity in sleep quality or KSS scores between CPAP treated OSA patients and healthy controls of a similar age. Treated OSA patients obtained quality sleep with no elevated day time sleepiness. However, cessation of treatment for one night caused sleep quality to deteriorate despite a comparable sleep time; the deterioration in sleep quality could explain the increase in daytime sleepiness. OSA patients need to know that even short-term noncompliance with CPAP treatment significantly impairs sleep quality, leading to excessive sleepiness during monotonous tasks such as driving. Actigraphy successfully identified nights of non-compliance in treated OSA patients; but did not differentiate between the sleep of CPAP treated OSA patients and healthy controls.
Resumo:
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Resumo:
Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered.
Resumo:
Microscopic changes occur in plant food materials during drying significantly influence the macroscopic properties and quality factors of the dried food materials. It is very critical to study microstructure to understand the underlying cellular mechanisms to improve performance of the food drying techniques. However, there is very limited research conducted on such microstructural changes of plant food material during drying. In this work, Gala apple parenchyma tissue samples were studied using a scanning electron microscope for gradual microstructural changes as affected by temperature, time and moisture content during hot air drying at two drying temperatures: 57 ℃ and 70 ℃. For fresh samples, the average cellular parameter values were; cell area: 20000 μm2, ferret diameter: 160 μm, perimeter: 600 μm, roundness: 0.76, elongation: 1.45 and compactness: 0.84. During drying, a higher degree of cell shrinkage was observed with cell wall warping and increase in intercellular space. However, no significant cell wall breakage was observed. The overall reduction of cell area, ferret diameter and perimeter were about 60%, 40% and 30%. The cell roundness and elongation showed overall increments of about 5% and the compactness remained unchanged. Throughout the drying cycle, cellular deformations were mainly influenced by the moisture content. During the initial and intermediate stages of drying, cellular deformations were also positively influenced by the drying temperature and the effect was reversed at the final stages of drying which provides clues for case hardening of the material.
Resumo:
‘Carbon trading fraudsters may have accounted for up to 90% of all market activity in some European countries, with criminals pocketing billions, mainly in Britain, France, Spain, Denmark and Holland, according to Europol and the European law enforcement agency.’ (Mason, 2009). ‘Carbon offset projects often result in land grabs, local environmental and social conflicts, as well as the repression of local communities and movements. The CDM approval process for projects allows little space for the voices of Indigenous Peoples and local communities – in fact, no project has ever been rejected on the grounds of rights violations, despite these being widespread’. (Carbon Trade Watch, 2013)
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
The central document governing the global organization of Air Navigation Services (ANS) is the Convention on International Civil Aviation, commonly referred to as the “Chicago Convention,” whose original version was signed in that city in 1944. In the Convention, Contracting States agreed to ensure the minimum standards of ANS established by ICAO, a specialized United Nations agency created by the Convention. Emanating from obligations under the Chicago Convention, ANS has traditionally provided by departments of national governments. However, there is a widespread trend toward transferring delivery of ANS services outside of line departments of national governments to independent agencies or corporations. The Civil Air Navigation Services Organisation (CANSO), which is the trade association for independent ANS providers, currently counts approximately 60 members, and is steadily growing. However, whatever delivery mechanisms are chosen, national governments remain ultimately responsible for ensuring that adequate ANS services are available. The provision by governments of ANS reflects the responsibility of the state for safety, international relations, and indirectly, the macroeconomic benefits of ensuring a sound infrastructure for aviation. ANS is a “public good” and an “essential good” provided to all aircraft using a country’s airfields and airspace. However, ANS also represents a service that directly benefits only a limited number of users, notably aircraft owners and operators. The idea that the users of the system, rather than the taxpaying public, should incur the costs associated with ANS provision is inherent in the commercialization process. However, ICAO sets out broad principles for the establishment of user charges, which member states are expected to comply with. ICAO states that only distance flown and aircraft weights are acceptable parameters for use in a charging system. These two factors are considered to be easy to measure, bear a reasonable relationship to the value of service received, and do not discriminate due to factors such as where the flight originated or the nation of aircraft registration.
Resumo:
Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.
Resumo:
This paper reports on the experimental testing of oxygen compatible ceramic matrix composite porous injectors in a nominally two-dimensional hydrogen fuelled and oxygen enriched radical farming scramjet in the T4 shock tunnel facility. All experiments were performed at a dynamic pressure of 146 kPa, an equivalent flight Mach number of 9.7, a stagnation pressure and enthalpy of 40MPa and 4.3 MJ/kg respectively and at a fuelling condition that resulted in an average equivalence ratio of 0.472. Oxygen was pre-mixed with the fuel prior to injection to achieve enrichment percentages of approximately 13%, 15% and 17%. These levels ensured that the hydrogen-oxidiser mix injected into the engine always remained too fuel rich to sustain a flame without any additional mixing with the captured air. Addition of pre-mixed oxygen with the fuel was found to significantly alter the performance of the engine; enhancing both combustion and ignition and converting a previously observed limited combustion condition into one with sustained and noticeable combustion induced pressure rise. Increases in the enrichment percentage lead to further increases in combustion levels and acted to reduce ignition lengths within the engine. Suppressed combustion runs, where a nitrogen test gas was used, confirmed that the pressure rise observed in these experiments as attributed to the oxygen enrichment and not associated with the increased mass injected.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.
Resumo:
Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.