984 resultados para 5 ray gr.
Resumo:
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.562.05 angstrom and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2.
Resumo:
Abstract Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs) determined by X-Ray Fluorescence (XRF) techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign) when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF) technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC) analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign) when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor overall survival (p < 0.001). Conclusions This study suggests that TEs expression has a great potential of application as a tumor biomarker, once it was revealed to be an effective tool to distinguish different types of breast tissues and to identify the difference between malignant and benign tumors. The expressions of all TEs were found statistically correlated with well-known prognostic factors for breast cancer. The element copper also showed statistical correlation with overall survival.
Resumo:
The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.
Resumo:
The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.
Resumo:
We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.
Resumo:
A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV. which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when lhe manufacturer parameters of lhe detector were used in lhe simulation. A complete Computerized Tomagraphy (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.
Resumo:
Selenophosphate synthetase (SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential selenium donor for selenocysteine synthesis. Recombinant full-length Leishmania major SPS (LmSPS2) was recalcitrant to crystallization. Therefore, a limited proteolysis technique was used and a stable N-terminal truncated construct (ΔN-LmSPS2) yielded suitable crystals. The Trypanosoma brucei SPS orthologue (TbSPS2) was crystallized by the microbatch method using paraffin oil. X-ray diffraction data were collected to resolutions of 1.9 Å for ΔN-LmSPS2 and 3.4 Å for TbSPS2.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en IngenierÃa (SIANI)
Resumo:
Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.
A new double laser pulse pumping scheme for transient collisionally excited plasma soft X-ray lasers
Resumo:
Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn
Resumo:
In this thesis, I have investigated the evolution of the high-redshift (z > 3) AGN population by collecting data from some of the major Chandra and XMM-Newton surveys. The final sample (141 sources) is one of the largest selected at z> 3 in the X- rays and it is characterised by a very high redshift completeness (98%). I derived the spectral slopes and obscurations through a spectral anaysis and I assessed the high-z evolution by deriving the luminosity function and the number counts of the sample. The best representation of the AGN evolution is a pure density evolution (PDE) model: the AGN space density is found to decrease by a factor of 10 from z=3 to z=5. I also found that about 50% of AGN are obscured by large column densities (logNH > 23). By comparing these data with those in the Local Universe, I found a positive evolution of the obscured AGN fraction with redshift, especially for luminous (logLx > 44) AGN. I also studied the gas content of z < 1 AGN-hosting galaxies and compared it with that of inactive galaxies. For the first time, I applied to AGN a method to derive the gas mass previously used for inactive galaxies only. AGN are found to live preferentially in gas-rich galaxies. This result on the one hand can help us in understanding the AGN triggering mechanisms, on the other hand explains why AGN are preferentially hosted by star-forming galaxies.
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
Durch steigende Energiekosten und erhöhte CO2 Emission ist die Forschung an thermoelektrischen (TE) Materialien in den Fokus gerückt. Die Eignung eines Materials für die Verwendung in einem TE Modul ist verknüpft mit der Gütezahl ZT und entspricht α2σTκ-1 (Seebeck Koeffizient α, Leitfähigkeit σ, Temperatur T und thermische Leitfähigkeit κ). Ohne den Leistungsfaktor α2σ zu verändern, soll ZT durch Senkung der thermischen Leitfähigkeit mittels Nanostrukturierung angehoben werden.rnBis heute sind die TE Eigenschaften von den makroskopischen halb-Heusler Materialen TiNiSn und Zr0.5Hf0.5NiSn ausgiebig erforscht worden. Mit Hilfe von dc Magnetron-Sputterdeposition wurden nun erstmals halbleitende TiNiSn und Zr0.5Hf0.5NiSn Schichten hergestellt. Auf MgO (100) Substraten sind stark texturierte polykristalline Schichten bei Substrattemperaturen von 450°C abgeschieden worden. Senkrecht zur Oberfläche haben sich Korngrößen von 55 nm feststellen lassen. Diese haben Halbwertsbreiten bei Rockingkurven von unter 1° aufgewiesen. Strukturanalysen sind mit Hilfe von Röntgenbeugungsexperimenten (XRD) durchgeführt worden. Durch Wachstumsraten von 1 nms 1 konnten in kürzester Zeit Filmdicken von mehr als einem µm hergestellt werden. TiNiSn zeigte den höchsten Leistungsfaktor von 0.4 mWK 2m 1 (550 K). Zusätzlich wurde bei Raumtemperatur mit Hilfe der differentiellen 3ω Methode eine thermische Leitfähigkeit von 2.8 Wm 1K 1 bestimmt. Es ist bekannt, dass die thermische Leitfähigkeit mit der Variation von Massen abnimmt. Weil zudem angenommen wird, dass sie durch Grenzflächenstreuung von Phononen ebenfalls reduziert wird, wurden Übergitter hergestellt. Dabei wurden TiNiSn und Zr0.5Hf0.5NiSn nacheinander abgeschieden. Die sehr hohe Kristallqualität der Übergitter mit ihren scharfen Grenzflächen konnte durch Satellitenpeaks und Transmissionsmikroskopie (STEM) nachgewiesen werden. Für ein Übergitter mit einer Periodizität von 21 nm (TiNiSn und Zr0.5Hf0.5NiSn jeweils 10.5 nm) ist bei einer Temperatur von 550 K ein Leistungsfaktor von 0.77 mWK 2m 1 nachgewiesen worden (α = 80 µVK 1; σ = 8.2 µΩm). Ein Übergitter mit der Periodizität von 8 nm hat senkrecht zu den Grenzflächen eine thermische Leitfähigkeit von 1 Wm 1K 1 aufgewiesen. Damit hat sich die Reduzierung der thermischen Leitfähigkeit durch die halb-Heusler Übergitter bestätigt. Durch die isoelektronischen Eigenschaften von Titan, Zirkonium und Hafnium wird angenommen, dass die elektrische Bandstruktur und damit der Leistungsfaktor senkrecht zu den Grenzflächen nur schwach beeinflusst wird.rn
Resumo:
Negli anni recenti, lo sviluppo dell’elettronica organica ha condotto all’impiego di materiali organici alla base di numerosi dispositivi elettronici, quali i diodi ad emissione di luce, i transistor ad effetto di campo, le celle solari e i rivelatori di radiazione. Riguardo quest’ultimi, gli studi riportati in letteratura si riferiscono per la maggiore a dispositivi basati su materiali organici a film sottile, che tuttavia presentano problemi relativi ad instabilità e degradazione. Come verrà illustrato, l’impiego di singoli cristalli organici come materiali alla base di questi dispositivi permette il superamento delle principali limitazioni che caratterizzano i rivelatori basati su film sottili. In questa attività sperimentale, dispositivi basati su cristalli organici semiconduttori verranno caratterizzati in base alle principali figure di merito dei rivelatori. Tra i campioni testati, alcuni dispositivi basati su singoli cristalli di 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-Pentacene) e 5,6,11,12-tetraphenyltetracene (Rubrene) hanno mostrato interessanti proprietà e sono stati quindi maggiormente studiati.
Resumo:
Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.