985 resultados para zinc function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocysts TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 5.3 and 32.3 5.4, respectively, compared with 90 with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E-2 or -I-2 to cultured embryos reversed the inhibitors effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global efforts in macromolecular crystallography started in the thirties of the last century. However, definitive results began to emerge only in the late fifties and the early sixties. India has a long tradition in crystallography. The country had a head start in theoretical and computational structural biology, thanks to the efforts of G.N. Ramachandran and his colleagues in the fifties and the sixties. However, macromolecular crystallography got off the ground in India only in the eighties, particularly after the Bangalore group received adequate support from the Department of Science and Technology under their Thrust Area Programme. The Bangalore centre was also identified as a national nucleus for the development of the area in the country. Since then work in the area has spread widely and is being carried out by several groups, mainly led by scientists trained at Bangalore or their descendents, in about thirty institutions in India. In addition to the Department of Science and Technology, the effort is now supported by other agencies like the Department of Biotechnology and the Council of Scientific and Industrial Research. The problems addressed by macromolecular crystallographers in India encompass almost all aspects of modern biology. Indian efforts in macromolecular crystallography have also become an important component of the international efforts in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poison gland and Dufour's gland are the two glands associated with the sting apparatus in female Apocrita (Hymenoptera). While the poison gland usually functions as an integral part of the venom delivery system, the Dufour's gland has been found to differ in its function in various hymenopteran groups. Like all exocrine glands, the function of the Dufour's gland is to secrete chemicals, but the nature and function of the secretions varies in different taxa. Functions of the Dufour's gland secretions range from serving as a component of material used in nest building, larval food, and pheromones involved in communicative functions that are important for both solitary and social species. This review summarizes the different functions reported for the Dufour's gland in hymenopterans, illustrating how the Dufour's gland secretions can be adapted to give rise to various functions in response to different challenges posed by the ways of life followed by different taxa. Aspects of development, structure, chemistry and the evolution of different functions are also touched upon briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic requirement for an autopilot is fast response and minimum steady state error for better guidance performance. The highly nonlinear nature of the missile dynamics due to the severe kinematic and inertial coupling of the missile airframe as well as the aerodynamics has been a challenge for an autopilot that is required to have satisfactory performance for all flight conditions in probable engagements. Dynamic inversion is very popular nonlinear controller for this kind of scenario. But the drawback of this controller is that it is sensitive to parameter perturbation. To overcome this problem, neural network has been used to capture the parameter uncertainty on line. The choice of basis function plays the major role in capturing the unknown dynamics. Here in this paper, many basis function has been studied for approximation of unknown dynamics. Cosine basis function has yield the best response compared to any other basis function for capturing the unknown dynamics. Neural network with Cosine basis function has improved the autopilot performance as well as robustness compared to Dynamic inversion without Neural network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contact behavior of tin mono sulfide (SnS) nanocrystalline thin films with zinc (Zn) and silver (Ag) contacts was studied. SnS films have been deposited on glass substrates by thermal evaporation technique at a growth temperature of 300 degrees C. The as-grown SnS films composed of vertically aligned nanocrystallites with a preferential orientation along the < 010 > direction. SnS films exhibited excellent chemical stoichiometry and direct optical band gap of 1.96 eV. These films also exhibited excellent Ohmic characteristics and low electrical resistivity with Zn contacts. The observed electrical resistivity of SnS films with Zn contacts is 22 times lower than that of the resistivity with Ag contacts. The interfacing analysis reveals the formation of conductive Zn-S layer between SnS and Zn as interfacial layer. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldimines react with reducing agents, such as Grignards, phenylsilane or zinc in the presence of titanium(IV) isopropoxide to form amines and reductively coupled imines (diamines). Using deuterium labeled reagents, the mechanism of reduction to form amines is described. Reducing agents, such as the Grignard and zinc result in the formation of low valent titanium (LVT), which in turn reduces the imine. On the other hand, phenylsilane reacts by a distinctly different mechanism and where a hydrogen atom from silicon is directly transferred to the titanium coordinated imine. (c) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of pharmacologic activity of a chemical compound is an essential step in any drug discovery process. We develop two new atom-centered fragment descriptors (vertex indices) - one based solely on topological considerations without discriminating atomor bond types, and another based on topological and electronic features. We also assess their usefulness by devising a method to rank and classify molecules with regard to their antibacterial activity. Classification performances of our method are found to be superior compared to two previous studies on large heterogeneous data sets for hit finding and hit-to-lead studies even though we use much fewer parameters. It is found that for hit finding studies topological features (simple graph) alone provide significant discriminating power, and for hit-to-lead process small but consistent improvement can be made by additionally including electronic features (colored graph). Our approach is simple, interpretable, and suitable for design of molecules as we do not use any physicochemical properties. The singular use of vertex index as descriptor, novel range based feature extraction, and rigorous statistical validation are the key elements of this study.