943 resultados para working capital
Resumo:
This paper analyzes the effect of uncertainty on investment and labor demand for Finnish firms during the time period 1987 – 2000. Utilizing a stock return based measure of uncertainty decomposed into systematic and idiosyncratic components, the results reveal that idiosyncratic uncertainty significantly reduces both investment and labor demand. Idiosyncratic uncertainty seems to influence investment in the current period, whereas the depressing effect on labor demand appears with a one-year lag. The results provide support that the depressing effect of idiosyncratic uncertainty on investment is stronger for small firms in comparison to large firms. Some evidence is reported regarding differential effects of uncertainty on labor demand conditional on firm characteristics. Most importantly, the depressing effect of lagged idiosyncratic uncertainty on labor demand tends to be stronger for diversified firms compared with focused firms.
Resumo:
IMAGINE a scientist who is a follower of Mahatma Gandhi. What kind of science can he practice? Would it be different from the kind of science that is being practised? I believe it would be and will illustrate this by constructing Mahatma Gandhi's view on science and scientific research based on his writings on related subjects. To me this implies that science is affected by the scientist's subjective values. I will then trace some of the values behind science as practised today and examine their implications for .he relationship between the scientist and the society. I will also present a case for abandoning the belief that science must be universal and show the relevance of Gandhian concepts to scientists.
Resumo:
I will discuss five sites of Soviet period dark heritage: three occupation museums in the capital cities of Estonia, Latvia and Lithuania, a Soviet sculpture park in Lithuanian countryside and a cultural park in a former prison in Tallinn, Estonia. All but the last one have an important role in the local tourist scene. My purpose is to find out how the traumatic Soviet past is presented at the sites and what kind of different modes of display are used. I will also discuss the ways the sites have been interpreted by the visitors.
Resumo:
The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.
Resumo:
Thee thesis, which consists of four original articles and a summarizing chapter, discusses homology between social class and cultural taste. Cultural taste is defined as the choices made in different areas of culture (television, cinema, reading, music, visual arts, sports, dining out, and leisure pursuits). Taste choices manifest themselves as likes and dislikes but also in what a person does. Social class is observed through occupational status, level of education, income and subjective views on class. The central research question concerns the relationship between social class and consumption of culture. The study aims to clarify what kind of class related differences can be found in cultural consumption, but also how these differences are connected to other factors stratifying the society such as gender, age and mother tongue. The data that is being analyzed consists of the data gathered by the project Cultural Capital and Social Differentiation in Contemporary Finland: An International Comparison. Class identification and the relation of cultural divisions to the socioeconomic ones are being analyzed using a nationally represent-ative survey data (N = 1388). Individual interviews (N = 25) and twenty focus group interviews (N = 20) on cultural consumption are also being analyzed. The theoretical framework is built around Pierre Buourdieu s theory of distinction and its critique but also recent research that expands on bourdieusian theory. In the theory of distinction lifestyle is thought to be defined through the quantity and quality of different capitals (economic, cultural and social). Cultural tastes are therefore linked to class status through different capitals. The study shows that the majority of Finns can place themselves in the class scene. Moreover, class-related differences can be found in cultural consumption in empirical analyses. The main differences between classes can be seen in how different classes relate to cultural products but also in the number of leisure pursuits. Being well-off economically is connected to being well-off culturally. High status manifests as omnivorous cultural consumption. The central differences are built upon occupational class so that the working class is more passive than other class groups. Same difference can be found in relation to education and income level. Other im-portant divisive variable is age. Age group defines what is being consumed: the younger respondents are inclined to choose popular culture whereas the older age groups choices represent more traditional taste choices.
Resumo:
The hot deformation characteristics of alpha-zirconium in the temperature range of 650 °C to 850 °C and in the strain-rate range of 10-3 to 102 s-1 are studied with the help of a power dissipation map developed on the basis of the Dynamic Materials Model.[7,8,9] The processing map describes the variation of the efficiency of power dissipation (η =2m/m + 1) calculated on the basis of the strain-rate sensitivity parameter (m), which partitions power dissipation between thermal and microstructural means. The processing map reveals a domain of dynamic recrystallization in the range of 730 °C to 850 °C and 10−2 to 1−1 with its peak efficiency of 40 pct at 800 °C and 0.1 s-1 which may be considered as optimum hot-working parameters. The characteristics of dynamic recrystallization are similar to those of static recrystallization regarding the sigmoidal variation of grain size (or hardness) with temperature, although the dynamic recrystallization temperature is much higher. When deformed at 650 °C and 10-3 s-1 texture-induced dynamic recovery occurred, while at strain rates higher than 1 s-1, alpha-zirconium exhibits microstructural instabilities in the form of localized shear bands which are to be avoided in processing.
Resumo:
The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.
Resumo:
The constitutive flow behaviour of OFHC copper under working conditions is studied using hot compression in the temperature range 650 to 900-degrees-C and strain rate range 0.001 to 100 s-1. The variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain rate sensitivity) with temperature and strain rate is represented in the form of a power dissipation map and interpreted on the basis of the Dynamic Materials Model. The map prominently exhibited a domain centered at 850-degrees-C and 100 s-1 with a peak efficiency of 35 %. On the basis of the correlation of variations of grain size, efficiency of power dissipation and hot workability with temperature, the domain is identified to represent dynamic recrystallization (DRX).
Resumo:
The deformation characteristics of 304L stainless steel in compression in the temperature range 20–700°C and strain rate range 0·001–100 s−1 have been studied with the aim of characterising the .flow instabilities occurring in the microstructure. At higher temperatures and strain rates the stainless steel exhibits flow localisation, whereas at temperatures below 500°C and strain rates lower than 0·1 s−1 the flow instabilities are due to dynamic strain aging. Strain induced martensite formation is responsible for the flow instabilities at room temperature and low strain rates (0·01 s−1). In view of the occurrence of these instabilities, cold working is preferable to warm working to achieve dimensional tolerance and reproducible properties in the product. Among the different criteria tested to explain the occurrence of instabilities, the continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase
Resumo:
Processing maps for hot working of as-cast and wrought stainless steels of type AISI 304 have been developed in the temperature range 600 to 1250°C and strain rate range 0.001 to 100 s−1. The domain of dynamic recrystallization (DRX) in as-cast material occurs at higher temperatures (1250°C) and lower strain rates (0.001 s−1) than in the wrought steel (1100°C and 0.01 s−1). The effect is explained in terms of enhanced nucleation rate of DRX due to the carbide, ferrite particles, stable oxides/nitrides and second-phase intermetallics in the as-cast microstructure. The DRX domain is wider in the wrought material although the peak efficiency is less (32%) than in the as-cast case (40%). The flow instability regime is not significantly affected by the initial microstructure
Resumo:
Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.