931 resultados para wide genome sequencing
Resumo:
Paracoccidioides brasiliensis isolates are not homogeneous in their patterns of pathogenicity in animals and adhesion to epithelial cells. During this investigation, genotypic differences were observed between two samples of P. brasiliensis strain 18 yeast phase (Pbl 8) previously cultured many times, one taken before (Pb18a) and the other after (Pb18b) animal inoculation. Random amplified polymorphic DNA analysis using the primer OPJ4 distinguished Pb18b from Pbl Ba by one 308 bp DNA fragment, which after cloning and sequencing was shown to encode a polypeptide sequence homologous to the protein beta-adaptin. It is suggested, by comparison to other micro-organisms, that this protein might play an important role in the virulence of P. brasiliensis. This result demonstrates the influence of in vitro subculturing on the genotype of this organism.
Resumo:
The data mining of Eucalyptus ESTs genome finds four clusters (EGCEST2257E11.g, EGBGRT3213F11.g, and EGCCFB1223H11.g) from highly conservative 14-3-3 protein family which modulates a wide variety of cellular processes. Multiple alignments were built from twenty four sequences of 14-3-3 proteins searched into the GenBank databases and into the four pools of Eucalyptus genome programs. The alignment has shown two regions highly conservative on the sequences corresponding to the motifs of protein phosphorylation and nine highly conservative regions on the sequence corresponding to the linkage regions of alpha helices structure based on three dimensional of dimer functional structure. The differences of amino acid into the structural and functional domains of 14-3-3 plant protein were identified and can explain the functional diversity of different isoforms. The phylogenic protein trees were built by the maximum parsimony and neighborjoining procedures of Clustal X alignments and PAUP software for phylogenic analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements
Resumo:
We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2'deoxycytidine (DAC), where we found a 1-16% decrease in Alu element and 18-60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.
Resumo:
The water buffalo is vital to the lives of small farmers and to the economy of many countries worldwide. Not only are they draught animals, but they are also a source of meat, horns, skin and particularly the rich and precious milk that may be converted to creams, butter, yogurt and many cheeses. Genome analysis of water buffalo has advanced significantly in recent years. This review focuses on currently available genome resources in water buffalo in terms of cytogenetic characterization, whole genome mapping and next generation sequencing. No doubt, these resources indicate that genome science comes of age in the species and will provide knowledge and technologies to help optimize production potential, reproduction efficiency, product quality, nutritional value and resistance to diseases. As water buffalo and domestic cattle, both members of the Bovidae family, are closely related, the vast amount of cattle genetic/genomic resources might serve as shortcuts for the buffalo community to further advance genome science and biotechnologies in the species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Resumo:
The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues.
Resumo:
Background: The sequencing and publication of the cattle genome and the identification of single nucleotide polymorphism (SNP) molecular markers have provided new tools for animal genetic evaluation and genomic-enhanced selection. These new tools aim to increase the accuracy and scope of selection while decreasing generation interval. The objective of this study was to evaluate the enhancement of accuracy caused by the use of genomic information (Clarifide® - Pfizer) on genetic evaluation of Brazilian Nellore cattle. Review: The application of genome-wide association studies (GWAS) is recognized as one of the most practical approaches to modern genetic improvement. Genomic selection is perhaps most suited to the improvement of traits with low heritability in zebu cattle. The primary interest in livestock genomics has been to estimate the effects of all the markers on the chip, conduct cross-validation to determine accuracy, and apply the resulting information in GWAS either alone [9] or in combination with bull test and pedigree-based genetic evaluation data. The cost of SNP50K genotyping however limits the commercial application of GWAS based on all the SNPs on the chip. However, reasonable predictability and accuracy can be achieved in GWAS by using an assay that contains an optimally selected predictive subset of markers, as opposed to all the SNPs on the chip. The best way to integrate genomic information into genetic improvement programs is to have it included in traditional genetic evaluations. This approach combines traditional expected progeny differences based on phenotype and pedigree with the genomic breeding values based on the markers. Including the different sources of information into a multiple trait genetic evaluation model, for within breed dairy cattle selection, is working with excellent results. However, given the wide genetic diversity of zebu breeds, the high-density panel used for genomic selection in dairy cattle (Ilumina Bovine SNP50 array) appears insufficient for across-breed genomic predictions and selection in beef cattle. Today there is only one breed-specific targeted SNP panel and genomic predictions developed using animals across the entire population of the Nellore breed (www.pfizersaudeanimal.com), which enables genomically - enhanced selection. Genomic profiles are a way to enhance our current selection tools to achieve more accurate predictions for younger animals. Material and Methods: We analyzed the age at first calving (AFC), accumulated productivity (ACP), stayability (STAY) and heifer pregnancy at 30 months (HP30) in Nellore cattle fitting two different animal models; 1) a traditional single trait model, and 2) a two-trait model where the genomic breeding value or molecular value prediction (MVP) was included as a correlated trait. All mixed model analyses were performed using the statistical software ASREML 3.0. Results: Genetic correlation estimates between AFC, ACP, STAY, HP30 and respective MVPs ranged from 0.29 to 0.46. Results also showed an increase of 56%, 36%, 62% and 19% in estimated accuracy of AFC, ACP, STAY and HP30 when MVP information was included in the animal model. Conclusion: Depending upon the trait, integration of MVP information into genetic evaluation resulted in increased accuracy of 19% to 62% as compared to accuracy from traditional genetic evaluation. GE-EPD will be an effective tool to enable faster genetic improvement through more dependable selection of young animals.
Resumo:
Papillomaviruses (PVs) infect a wide range of animal species and show great genetic diversity. To date, excluding equine sarcoids, only three species of PVs were identified associated with lesions in horses: Equus caballus papillomavirus 1 (EcPV1-cutaneous), EcPV2 (genital) and EcPV3 (aural plaques). In this study, we identified a novel equine PV from aural plaques, which we designated EcPV4. Cutaneous samples from horses with lesions that were microscopically diagnosed as aural plaques were subjected to DNA extraction, amplification and sequencing. Rolling circle amplification and inverse PCR with specific primers confirmed the presence of an approximately 8. kb circular genome. The full-length EcPV4 L1 major capsid protein sequence has 1488 nucleotides (495 amino acids). EcPV4 had a sequence identity of only 53.3%, 60.2% and 51.7% when compared with the published sequences for EcPV1, EcPV2 and EcPV3, respectively. A Bayesian phylogenetic analysis indicated that EcPV4 clusters with EcPV2, but not with EcPV1 and EcPV3. Using the current PV classification system that is based on the nucleotide sequence of L1, we could not define the genus of the newly identified virus. Therefore, a structural analysis of the L1 protein was carried out to aid in this classification because EcPV4 cause lesion similar to the lesion caused by EcPV3. A comparison of the superficial loops demonstrated a distinct amino acid conservation pattern between EcPV4/EcPV2 and EcPV4/EcPV3. These results demonstrate the presence of a new equine PV species and that structural studies could be useful in the classification of PVs. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)