989 resultados para virtual property
Resumo:
In the context of collaborative product development, new requirements need to be accommodated for Virtual Prototyping Simulation (VPS), such as distributed processing and the integration of models created using different tools or languages. Existing solutions focus mainly on the implementation of distributed processing, but this paper explores the issues of combining different models (some of which may be proprietary) developed in different software environments. In this paper, we discuss several approaches for developing VPS, and suggest how it can best be integrated into the design process. An approach is developed to improve collaborative work in a VPS development by combining disparate computational models. Specifically, a system framework is proposed to separate the system-level modeling from the computational infrastructure. The implementation of a simple prototype demonstrates that such a paradigm is viable and thus provides a new means for distributed VPS development. © 2009 by ASME.
Resumo:
Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.
Resumo:
Virtual assembly environment (VAE) technology has the great potential for benefiting the manufacturing applications in industry. Usability is an important aspect of the VAE. This paper presents the usability evaluation of a developed multi-sensory VAE. The evaluation is conducted by using its three attributes: (a) efficiency of use; (b) user satisfaction; and (c) reliability. These are addressed by using task completion times (TCTs), questionnaires, and human performance error rates (HPERs), respectively. A peg-in-a-hole and a Sener electronic box assembly task have been used to perform the experiments, using sixteen participants. The outcomes showed that the introduction of 3D auditory and/or visual feedback could improve the usability. They also indicated that the integrated feedback (visual plus auditory) offered better usability than either feedback used in isolation. Most participants preferred the integrated feedback to either feedback (visual or auditory) or no feedback. The participants' comments demonstrated that nonrealistic or inappropriate feedback had negative effects on the usability, and easily made them feel frustrated. The possible reasons behind the outcomes are also analysed. © 2007 ACADEMY PUBLISHER.
Resumo:
The octanol-air partition coefficient (K-OA) is a key descriptor of chemicals partitioning between the atmosphere and environmental organic phases. Quantitative structure-property relationships (QSPR) are necessary to model and predict KOA from molecular structures. Based on 12 quantum chemical descriptors computed by the PM3 Hamiltonian, using partial least squares (PLS) analysis, a QSPR model for logarithms of K-OA to base 10 (log K-OA) for polychlorinated naphthalenes (PCNs), chlorobenzenes and p,p'-DDT was obtained. The cross-validated Q(cum)(2) value of the model is 0.973, indicating a good predictive ability of the model. The main factors governing log K-OA of the PCNs, chlorobenzenes, and p,p'-DDT are, in order of decreasing importance, molecular size and molecular ability of donating/accepting electrons to participate in intermolecular interactions. The intermolecular dispersive interactions play a leading role in governing log K-OA. The more chlorines in PCN and chlorobenzene molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) of the molecules leads to decreasing log K-OA values, implying possible intermolecular interactions between the molecules under study and octanol molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on nine quantum chemical descriptors computed by PM3 Hamiltonian, using partial least squares analysis, a significant quantitative structure-property relationship for the logarithm of octanol-air partition coefficients (log K-OA) of polychlorinated biphenyls (PCBs) was obtained. The cross-validated Q(cum)(2) value of the model is 0.962, indicating a good predictive ability. The intermolecular dispersive interactions and thus the size of the PCB molecules play a key role in governing log K-OA. The greater the size of PCB molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) values of the PCBs leads to decreasing log K-OA values, indicating possible interactions between PCB and octanol molecules. Increasing Q(Cl)(+) (the most positive net atomic charges on a chlorine atom) and Q(C)(-) (the largest negative net atomic charge on a carbon atom) values of PCBs results in decreasing log K-OA values, implying possible intermolecular electrostatic interactions between octanol and PCB molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.