3 resultados para virtual property
em CaltechTHESIS
Resumo:
This thesis is divided into three chapters. In the first chapter we study the smooth sets with respect to a Borel equivalence realtion E on a Polish space X. The collection of smooth sets forms σ-ideal. We think of smooth sets as analogs of countable sets and we show that an analog of the perfect set theorem for Σ11 sets holds in the context of smooth sets. We also show that the collection of Σ11 smooth sets is ∏11 on the codes. The analogs of thin sets are called sparse sets. We prove that there is a largest ∏11 sparse set and we give a characterization of it. We show that in L there is a ∏11 sparse set which is not smooth. These results are analogs of the results known for the ideal of countable sets, but it remains open to determine if large cardinal axioms imply that ∏11 sparse sets are smooth. Some more specific results are proved for the case of a countable Borel equivalence relation. We also study I(E), the σ-ideal of closed E-smooth sets. Among other things we prove that E is smooth iff I(E) is Borel.
In chapter 2 we study σ-ideals of compact sets. We are interested in the relationship between some descriptive set theoretic properties like thinness, strong calibration and the covering property. We also study products of σ-ideals from the same point of view. In chapter 3 we show that if a σ-ideal I has the covering property (which is an abstract version of the perfect set theorem for Σ11 sets), then there is a largest ∏11 set in Iint (i.e., every closed subset of it is in I). For σ-ideals on 2ω we present a characterization of this set in a similar way as for C1, the largest thin ∏11 set. As a corollary we get that if there are only countable many reals in L, then the covering property holds for Σ12 sets.
Resumo:
If E and F are saturated formations, we say that E is strongly contained in F if for any solvable group G with E-subgroup, E, and F-subgroup, F, some conjugate of E is contained in F. In this paper, we investigate the problem of finding the formations which strongly contain a fixed saturated formation E.
Our main results are restricted to formations, E, such that E = {G|G/F(G) ϵT}, where T is a non-empty formation of solvable groups, and F(G) is the Fitting subgroup of G. If T consists only of the identity, then E=N, the class of nilpotent groups, and for any solvable group, G, the N-subgroups of G are the Carter subgroups of G.
We give a characterization of strong containment which depends only on the formations E, and F. From this characterization, we prove:
If T is a non-empty formation of solvable groups, E = {G|G/F(G) ϵT}, and E is strongly contained in F, then
(1) there is a formation V such that F = {G|G/F(G) ϵV}.
(2) If for each prime p, we assume that T does not contain the class, Sp’, of all solvable p’-groups, then either E = F, or F contains all solvable groups.
This solves the problem for the Carter subgroups.
We prove the following result to show that the hypothesis of (2) is not redundant:
If R = {G|G/F(G) ϵSr’}, then there are infinitely many formations which strongly contain R.
Resumo:
Part I
Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.
Part II
The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.