982 resultados para vehicle scheduling
Resumo:
This paper presents the findings of an experiment which looked at the effects of performing applied tasks (action learning) prior to the completion of the theoretical learning of these tasks (explanation-based learning), and vice-versa. The applied tasks took the form of laboratories for the Object-Oriented Analysis and Design (OOAD) course, theoretical learning was via lectures.
Resumo:
We study a two-machine flow shop scheduling problem with no-wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst-case ratio of 3/2. For the second scenario, we offer a 4/3-approximation algorithm.
Resumo:
This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.
Resumo:
In this paper we study the two-machine flow shop and open shop problems to minimize the makespan with a single interstage transporter that may carry any number of jobs between the machines at a time. For each of these problems we present a best possible approximation algorithm within a class of schedules with at most two shipments. As a by-product of this research, for the problem of minimizing the makespan on parallel identical machines we analyze the ratio of the makespan for a non-preemptive schedule over the makespan of a preemptive schedule.
Resumo:
We consider a single machine due date assignment and scheduling problem of minimizing holding costs with no tardy jobs tinder series parallel and somewhat wider class of precedence constraints as well as the properties of series-parallel graphs.
Resumo:
In this paper, we consider the problem of providing flexibility to solutions of two-machine shop scheduling problems. We use the concept of group-scheduling to characterize a whole set of schedules so as to provide more choice to the decision-maker at any decision point. A group-schedule is a sequence of groups of permutable operations defined on each machine where each group is such that any permutation of the operations inside the group leads to a feasible schedule. Flexibility of a solution and its makespan are often conflicting, thus we search for a compromise between a low number of groups and a small value of makespan. We resolve the complexity status of the relevant problems for the two-machine flow shop, job shop and open shop. A number of approximation algorithms are developed and their worst-case performance is analyzed. For the flow shop, an effective heuristic algorithm is proposed and the results of computational experiments are reported.
Resumo:
In this paper we provide a fairly complete complexity classification of various versions of the two-machine permutation flow shop scheduling problem to minimize the makespan in which some of the jobs have to be processed with no-wait in process. For some version, we offer a fully polynomial-time approximation scheme and a 43-approximation algorithm.
Resumo:
We consider a range of single machine and identical parallel machine pre-emptive scheduling models with controllable processing times. For each model we study a single criterion problem to minimize the compression cost of the processing times subject to the constraint that all due dates should be met. We demonstrate that each single criterion problem can be formulated in terms of minimizing a linear function over a polymatroid, and this justifies the greedy approach to its solution. A unified technique allows us to develop fast algorithms for solving both single criterion problems and bicriteria counterparts.
Resumo:
We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.
Resumo:
The paper considers an on-line single machine scheduling problem where the goal is to minimize the makespan. The jobs are partitioned into families and a setup is performed every time the machine starts processing a batch of jobs of the same family. The scheduler is aware of the number of families and knows the setup time of each family, although information about a job only becomes available when that job is released. We give a lower bound on the competitive ratio of any on-line algorithm. Moreover, for the case of two families, we provide an algorithm with a competitive ratio that achieves this lower bound. As the number of families increases, the lower bound approaches 2, and we give a simple algorithm with a competitive ratio of 2.
Resumo:
A rigid wall model has been used widely in the numerical simulation of rail vehicle impacts. Finite element impact modelling of rail vehicles is generally based on a half-width and full-length or half-length structure, depending on the symmetry. The structure and components of rail vehicles are normally designed to cope with proof loading to ensure adequate ride performance. In this paper, the authors present a study of a rail vehicle with driving cab focused on improving the modelling approach and exploring the intrinsic structural weaknesses to enhance its crashworthiness. The underpinning research used finite element analysis and compared the behaviour of the rail vehicle in different impact scenarios. It was found that the simulation of a rigid wall impact can mask structural weaknesses; that even a completely symmetrical impact may lead to an asymmetrical result; that downward bending is an intrinsic weakness of conventional rail vehicles and that a rigid part of the vehicle structure, such as the body bolster, may cause uncoordinated deformation and shear fracture between the vehicle sections. These findings have significance for impact simulation, the full-scale testing of rail vehicles and rail vehicle design in general.