957 resultados para surface modified clays
Resumo:
Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.
Resumo:
We reconstructed Middle Pleistocene surface hydrography in the western South Atlantic based on planktonic foraminiferal assemblages, modern analog technique and Globorotalia truncatulinoides isotopic ratios of core SP1251 (38 degrees 29.7`S / 53 degrees 40.7`W / 3400 m water depth). Biostratigraphic analysis suggests that sediments were deposited between 0.3 and 0.12 Ma and therefore correlate to Marine Isotopic Stage 6 or 8. Faunal assemblage-based winter and summer SST estimates suggest that the western South Atlantic at 38 degrees S was 4-6 degrees C colder than at present, within the expected range for a glacial interval. High relative abundances of subantarctic species, particularly the dominance of Neogloboquadrina pachyderma (left), support lower than present SSTs throughout the recorded period. The oxygen isotopic composition of G. truncatulinoides suggests a northward shift of the Brazil-Malvinas Confluence Zone and of the associated mid-latitude frontal system during this Middle Pleistocene cold period, and a stronger than present influence of superficial subantarctic waters and lowering in SSTs at our core site during the recorded Middle Pleistocene glacial.
Resumo:
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PM) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PM binding to cell- or ECM-bound-HK and PM activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Natural rubber (NR) is a raw material largely used by the modern industry; however, it is common that chemical modifications must be made to NR in order to improve properties such as hydrophobicity or mechanical resistance. This work deals with the correlation of properties of NR modified with dimethylaminoethylmethacrylate or methylmethacrylate as grafting agents. Dynamic-mechanical behavior and stress/strain relations are very important properties because they furnish essential characteristics of the material such as glass transition temperature and rupture point. These properties are concerned with different physical principles; for this reason, normally they are not related to each other. This work showed that they can be correlated by artificial neural networks (ANN). So, from one type of assay, the properties that as a rule only could be obtained from the other can be extracted by ANN correlation. POLYM. ENG. SCI., 49:499-505, 2009. (c) 2009 Society of Plastics Engineers
Resumo:
Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The technique based on sol-gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane-polyvinyl alcohol (POS-PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS-PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS-PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS-PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis-Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS-PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis-Menten constant value (K-m) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry
Resumo:
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g. Published by Elsevier Ltd.
Resumo:
This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.