960 resultados para stochastic dynamically systems
Resumo:
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
Loss networks have long been used to model various types of telecommunication network, including circuit-switched networks. Such networks often use admission controls, such as trunk reservation, to optimize revenue or stabilize the behaviour of the network. Unfortunately, an exact analysis of such networks is not usually possible, and reduced-load approximations such as the Erlang Fixed Point (EFP) approximation have been widely used. The performance of these approximations is typically very good for networks without controls, under several regimes. There is evidence, however, that in networks with controls, these approximations will in general perform less well. We propose an extension to the EFP approximation that gives marked improvement for a simple ring-shaped network with trunk reservation. It is based on the idea of considering pairs of links together, thus making greater allowance for dependencies between neighbouring links than does the EFP approximation, which only considers links in isolation.
Resumo:
We extend a recent construction for an integrable model describing Josephson tunneling between identical BCS systems to the case where the BCS systems have different single particle energy levels. The exact solution of this generalized model is obtained through the Bethe ansatz.
Resumo:
We introduce an integrable model for two coupled BCS systems through a solution of the Yang-Baxter equation associated with the Lie algebra su(4). By employing the algebraic Bethe ansatz, we determine the exact solution for the energy spectrum. An asymptotic analysis is conducted to determine the leading terms in the ground state energy, the gap and some one point correlation functions at zero temperature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.
Resumo:
Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.
Resumo:
Composite resin is a widely-used direct tooth coloured restorative material. Photoactivation of the polymerisation reaction can be achieved by visible blue light from a range of light sources, including halogen lamps, metal halide lamps, plasma arc lamps, and Light Emitting Diode (LED) lights. Concerns have been raised that curing lights may induce a temperature rise that could be detrimental to the vitality of the dental pulp during the act of photoactivation. The present study examined heat changes associated with standardised class V restorations on the buccal surface of extracted premolar teeth, using a curing time of 40 seconds. The independent effects of type of light source, resin shade and remaining tooth thickness were assessed using a matrix experimental design. When a conventional halogen lamp, a metal halide lamp and two different LED lights were compared, it was found that both LED lamps elicited minimal thermal changes at the level of the dental pulp, whereas the halogen lamp induced greater changes and the metal halide lamp caused the greatest thermal insult of all the light sources. These thermal changes were influenced by resin shade, with different patterns for LED versus halogen or halide sources. Thermal stress reduced as the remaining thickness of tooth structure between the pulp and the cavity floor increased. From these results, it is concluded that LED lights produce the least thermal insult during photopolymerisation of composite resins.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory.
Resumo:
We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.
Resumo:
We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.