984 resultados para spatial memory
Resumo:
BACKGROUND: Memory responses require immune competence. We assessed the influence of priming with AS03-adjuvanted pandemic vaccine (Pandemrix®) on memory responses of HIV patients, kidney recipients (SOT) and healthy controls (HC). METHOD: Participants (HIV: 197, SOT: 53; HC: 156) were enrolled in a prospective study and 390/406 (96%) completed it. All had been primed in 2009/2010 with 1 (HC) or 2 (patients) doses of Pandemrix®, and were boosted with the 2010/2011 seasonal influenza vaccine. Geometric mean titres and seroprotection rates were measured 12 months after priming and 4 weeks after boosting. Primary and memory responses were directly compared in 191 participants (HCW: 69, HIV: 71, SOT: 51) followed during 2 consecutive seasons. RESULTS: Most participants (HC: 77.8%, HIV: 77.6%, SOT: 66%) remained seroprotected at 12 months post-priming. Persisting A/09/H1N1 titers were high in HIV (100.2) and HC (120.1), but lower in SOT (61.4) patients. Memory responses reached higher titers in HIV (507.8) than in HC (253.5) and SOT (136.9) patients. Increasing age and lack of HAART reduced persisting and memory responses, mainly influenced by residual antibody titers. Comparing 2009/2010 and 2010/2011 titers in 191 participants followed for 2 seasons indicated lower post-2010/2011 titers in HC (240.2 vs 313.9), but higher titers in HIV (435.7 vs 338.0) and SOT (136 vs 90.3) patients. CONCLUSIONS: Priming with 2 doses of Pandemrix® elicited persistent antibody responses and even stronger memory responses to non-adjuvanted seasonal vaccine in HIV patients than 1 dose in healthy subjects. Adjuvanted influenza vaccines may improve memory responses of immunocompromised patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT01022905.
Performance on a Virtual Reality Angled Laparoscope Task Correlates with Spatial Ability of Trainees
Resumo:
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Resumo:
In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.
Resumo:
BACKGROUND: Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. OBJECTIVE: We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. METHOD: We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. RESULTS: In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. CONCLUSION: Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions.
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.
Resumo:
Impaired visual search is a hallmark of spatial neglect. When searching for an unique feature (e.g., color) neglect patients often show only slight visual field asymmetries. In contrast, when the target is defined by a combination of features (e.g., color and form) they exhibit a severe deficit of contralesional search. This finding suggests a selective impairment of the serial deployment of spatial attention. Here, we examined this deficit with a preview paradigm. Neglect patients searched for a target defined by the conjunction of shape and color, presented together with varying numbers of distracters. The presentation time was varied such that on some trials participants previewed the target together with same-shape/different-color distracters, for 300 or 600 ms prior to the appearance of additional different-shape/same-color distracters. On the remaining trials the target and all distracters were shown simultaneously. Healthy participants exhibited a serial search strategy only when all items were presented simultaneously, whereas in both preview conditions a pop-out effect was observed. Neglect patients showed a similar pattern when the target was presented in the right hemifield. In contrast, when searching for a target in the left hemifield they showed serial search in the no-preview condition, as well as with a preview of 300 ms, and partly even at 600 ms. A control experiment suggested that the failure to fully benefit from item preview was probably independent of accurate perception of time. Our results, when viewed in the context of existing literature, lead us to conclude that the visual search deficit in neglect reflects two additive factors: a biased representation of attentional priority in favor of ipsilesional information and exaggerated capture of attention by ipsilesional abrupt onsets.
Resumo:
RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.
Resumo:
Working memory, the ability to store and simultaneously manipulate information, is affected in several neuropsychiatric disorders which lead to severe cognitive and functional deficits. An electrophysiological marker for this process could help identify early cerebral function abnormalities. In subjects performing working memory-specific n-back tasks, event-related potential analysis revealed a positive-negative waveform (PNwm) component modulated in amplitude by working memory load. It occurs in the expected time range for this process, 140-280 ms after stimulus onset, superimposed on the classical P200 and N200 components. Independent Component Analysis extracted two functional components with latencies and topographical scalp distributions similar to the PNwm. Our results imply that the PNwm represents a new electrophysiological index for working memory load in humans.
Resumo:
Introduction: Cognitive impairment affects 40-65% of multiple sclerosis (MS) patients, often since early stages of the disease (relapsing remitting MS, RRMS). Frequently affected functions are memory, attention or executive abilities but the most sensitive measure of cognitive deficits in early MS is the information processing speed (Amato, 2008). MRI has been extensively exploited to investigate the substrate of cognitive dysfunction in MS but the underlying physiopathological mechanisms remain unclear. White matter lesion load, whole-brain atrophy and cortical lesions' number play a role but correlations are in some cases modest (Rovaris, 2006; Calabrese, 2009). In this study, we aimed at characterizing and correlating the T1 relaxation times of cortical and sub-cortical lesions with cognitive deficits detected by neuropsychological tests in a group of very early RR MS patients. Methods: Ten female patients with very early RRMS (age: 31.6 ±4.7y; disease duration: 3.8 ±1.9y; EDSS disability score: 1.8 ±0.4) and 10 age- and gender-matched healthy volunteers (mean age: 31.2 ±5.8y) were included in the study. All participants underwent the following neuropsychological tests: Rao's Brief Repeatable Battery of Neuropsychological tests (BRB-N), Stockings of Cambridge, Trail Making Test (TMT, part A and B), Boston Naming Test, Hooper Visual Organization Test and copy of the Rey-Osterrieth Complex Figure. Within 2 weeks from neuropsychological assessment, participants underwent brain MRI at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil. The imaging protocol included 3D sequences with 1x1x1.2 mm3 resolution and 256x256x160 matrix, except for axial 2D-FLAIR: -DIR (T2-weighted, suppressing both WM and CSF; Pouwels, 2006) -MPRAGE (T1-weighted; Mugler, 1991) -MP2RAGE (T1-weighted with T1 maps; Marques, 2010) -FLAIR SPACE (only for patient 4-10, T2-weighted; Mugler, 2001) -2D Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix). Lesions were identified by one experienced neurologist and radiologist using all contrasts, manually contoured and assigned to regional locations (cortical or sub-cortical). Lesion number, volume and T1 relaxation time were calculated for lesions in each contrast and in a merged mask representing the union of the lesions from all contrasts. T1 relaxation times of lesions were normalized with the mean T1 value in corresponding control regions of the healthy subjects. Statistical analysis was performed using GraphPad InStat software. Cognitive scores were compared between patients and controls with paired t-tests; p values ≤ 0.05 were considered significant. Spearmann correlation tests were performed between the cognitive tests, which differed significantly between patients and controls, and lesions' i) number ii) volume iii) T1 relaxation time iv) disease duration and v) years of study. Results: Cortical and sub-cortical lesions count, T1 values and volume are reported in Table 1 (A and B). All early RRMS patients showed cortical lesions (CLs) and the majority consisted of CLs type I (lesions with a cortical component extending to the sub-cortical tissue). The rest of cortical lesions were characterized as type II (intra-cortical lesions). No type III/IV lesions (large sub-pial lesions) were detected. RRMS patients were slightly less educated (13.5±2.5y vs. 16.3±1.8y of study, p=0.02) than the controls. Signs of cortical dysfunction (i.e. impaired learning, language, visuo-spatial skills or gnosis) were rare in all patients. However, patients showed on average lower scores on measures of visual attention and information processing speed (TMT-part A: p=0.01; TMT-part B: p=0.006; PASAT-included in the BRB-N: p=0.04). The T1 relaxation values of CLs type I negatively correlated with the TMT-part A score (r=0.78, p<0.01). The correlations of TMT-part B score and PASAT score with T1 relaxation time of lesions as well and the correlation between TMT-part A, TMT-part B and PASAT score with lesions' i) number ii) volume iii) disease duration and iv) years of study did not reach significance. In order to preclude possible influences from partial volume effects on the T1 values, the correlation between lesion volume and T1 value of CLs type I was calculated; no correlation was found, suggesting that partial volume effects did not affect the statistics. Conclusions: The present pilot study reports for the first time the presence and the T1 characteristics at 3 T of cortical lesions in very early RRMS (< 6 y disease duration). It also shows that CLS type I represents the most frequent cortical lesion type in this cohort of RRMS patients. In addition, it reveals a negative correlation between the attentional test TMT-part A and the T1 properties of cortical lesions type I. In other words, lower attention deficits are concomitant with longer T1-relaxation time in cortical lesions. In respect to this last finding, it could be speculated that long relaxation time correspond to a certain degree of tissue loss that is enough to stimulate compensatory mechanisms. This hypothesis is in line with previous fMRI studies showing functional compensatory mechanisms to help maintaining normal or sub-normal attention performances in RR MS patients (Penner, 2003).
Resumo:
Sleep spindles are distinctive electroencephalographic (EEG) oscillations emerging during non-rapid-eye-movement sleep (NREMS) that have been implicated in multiple brain functions, including sleep quality, sensory gating, learning, and memory. Despite considerable knowledge about the mechanisms underlying these neuronal rhythms, their function remains poorly understood and current views are largely based on correlational evidence. Here, we review recent studies in humans and rodents that have begun to broaden our understanding of the role of spindles in the normal and disordered brain. We show that newly identified molecular substrates of spindle oscillations, in combination with evolving technological progress, offer novel targets and tools to selectively manipulate spindles and dissect their role in sleep-dependent processes.