987 resultados para silicoaluminophosphate molecular sieve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Half sandwich complexes of the type [CpM(CO)(n)X] {X=Cl, Br, I; If, M=Fe, Ru; n=2 and if M=Mo; n=3} and [CpNiPPh3X] {X=Cl, Br, I} have been synthesized and their second order molecular nonlinearity (beta) measured at 1064 nm in CHCl3 by the hyper-Rayleigh scattering technique. Iron complexes consistently display larger beta values than ruthenium complexes while nickel complexes have marginally larger beta values than iron complexes. In the presence of an acceptor ligand such as CO or PPh3, the role of the halogen atom is that of a pi donor. The better overlap of Cl orbitals with Fe and Ni metal centres make Cl a better pi donor than Br or I in the respective complexes. Consequently, M-pi interaction is stronger in Fe/Ni-Cl complexes. The value of beta decreases as one goes down the halogen group. For the complexes of 4d metal ions where the metal-ligand distance is larger, the influence of pi orbital overlap appears to be less important, resulting in moderate changes in beta as a function of halogen substitution. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article by Meric-Bernstam et al1 that was recently published in Journal of Clinical Oncology raises important questions about the clinical application of large-scale genomic testing. We congratulate the authors for this ambitious study, which successfully profiled 2,000 consecutive patients with advanced cancer. The next-generation sequencing (NGS) platform was used for 1,749 of 2,000 patients (87.5%). Of 789 patients with potentially actionable mutations, 83 (11%, or 4% of screened population) were enrolled in a genomically matched clinical study. As the editorial2 accompanying the article by Meric-Bernstam et al1 pointed out, the 4% figure, albeit disappointing, may be an underestimate because cancers such as lung adenocarcinoma and melanoma, for which ≥ 50% of patients have actionable mutations, were under-represented. ...