866 resultados para semantic leveling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflective skills are widely regarded as a means of improving students’ lifelong learning and professional practice in higher education (Rogers 2001). While the value of reflective practice is widely accepted in educational circles, a critical issue is that reflective writing is complex, and has high rhetorical demands, making it difficult to master unless it is taught in an explicit and systematic way. This paper argues that a functional-semantic approach to language (Eggins 2004), based on Halliday’s (1978) systemic functional linguistics can be used to develop a shared language to explicitly teach and assess reflective writing in higher education courses. The paper outlines key theories and scales of reflection, and then uses systemic functional linguistics to develop a social semiotic model for reflective writing. Examples of reflective writing are analysed to show how such a model can be used explicitly to improve the reflective writing skills of higher education students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Separability is a concept that is very difficult to define, and yet much of our scientific method is implicitly based upon the assumption that systems can sensibly be reduced to a set of interacting components. This paper examines the notion of separability in the creation of bi-ambiguous compounds that is based upon the CHSH and CH inequalities. It reports results of an experiment showing that violations of the CHSH and CH inequality can occur in human conceptual combination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its debut in 2001 Wikipedia has attracted the attention of many researchers in different fields. In recent years researchers in the area of ontology learning have realised the huge potential of Wikipedia as a source of semi-structured knowledge and several systems have used it as their main source of knowledge. However, the techniques used to extract semantic information vary greatly, as do the resulting ontologies. This paper introduces a framework to compare ontology learning systems that use Wikipedia as their main source of knowledge. Six prominent systems are compared and contrasted using the framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emotions play a central role in mediation as they help to define the scope and direction of a conflict. When a party to mediation expresses (and hence entrusts) their emotions to those present in a mediation, a mediator must do more than simply listen - they must attend to these emotions. Mediator empathy is an essential skill for communicating to a party that their feelings have been heard and understood, but it can lead mediators into trouble. Whilst there might exist a theoretical divide between the notions of empathy and sympathy, the very best characteristics of mediators (caring and compassionate nature) may see empathy and sympathy merge - resulting in challenges to mediator neutrality. This article first outlines the semantic difference between empathy and sympathy and the role that intrapsychic conflict can play in the convergence of these behavioural phenomena. It then defines emotional intelligence in the context of a mediation, suggesting that only the most emotionally intelligent mediators are able to emotionally connect with the parties, but maintain an impression of impartiality – the quality of remaining ‘attached yet detached’ to the process. It is argued that these emotionally intelligent mediators have the common qualities of strong self-awareness and emotional self-regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian National Data Service (ANDS) was established in 2008 and aims to: influence national policy in the area of data management in the Australian research community; inform best practice for the curation of data, and, transform the disparate collections of research data around Australia into a cohesive collection of research resources One high profile ANDS activity is to establish the population of Research Data Australia, a set of web pages describing data collections produced by or relevant to Australian researchers. It is designed to promote visibility of research data collections in search engines, in order to encourage their re-use. As part of activities associated with the Australian National Data Service, an increasing number of Australian Universities are choosing to implement VIVO, not as a platform to profile information about researchers, but as a 'metadata store' platform to profile information about institutional research data sets, both locally and as part of a national data commons. To date, the University of Melbourne, Griffith University, the Queensland University of Technology, and the University of Western Australia have all chosen to implement VIVO, with interest from other Universities growing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Item folksonomy or tag information is popularly available on the web now. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. In this paper, we propose to combine item taxonomy and folksonomy to reduce the noise of tags and make personalized item recommendations. The experiments conducted on the dataset collected from Amazon.com demonstrated the effectiveness of the proposed approaches. The results suggested that the recommendation accuracy can be further improved if we consider the viewpoints and the vocabularies of both experts and users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social tags are an important information source in Web 2.0. They can be used to describe users’ topic preferences as well as the content of items to make personalized recommendations. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. To eliminate the noise of tags, in this paper we propose to use the multiple relationships among users, items and tags to find the semantic meaning of each tag for each user individually. With the proposed approach, the relevant tags of each item and the tag preferences of each user are determined. In addition, the user and item-based collaborative filtering combined with the content filtering approach are explored. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on real world datasets collected from Amazon.com and citeULike website.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.