891 resultados para science learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades big improvements have been done in the field of computer aided learning, based on improvements done in computer science and computer systems. Although the field has been always a bit lagged, without using the latest solutions, it has constantly gone forward taking profit of the innovations as they show up. As long as the train of the computer science does not stop (and it won’t at least in the near future) the systems that take profit of those improvements will not either, because we humans will always need to study; Sometimes for pleasure and some other many times out of need. Not all the attempts in the field of computer aided learning have been in the same direction. Most of them address one or some few of the problems that show while studying and don’t take into account solutions proposed for some other problems. The reasons for this can be varied. Sometimes the solutions simply are not compatible. Some other times, because the project is an investigation it’s interesting to isolate the problem. And, in commercial products, licenses and patents often prevent the new projects to use previous work. The world moved forward and this is an attempt to use some of the options offered by technology, mixing some old ideas with new ones.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated memory impairment in newly hatched chicks following in ovo exposure to a 50-Hz magnetic field (MF) of 2 mT (60 min/day) on embryonic days 12-18. Isolated and paired chicks were used to test the effect of stress during training, and memory retention was tested at 10, 30, and 120 min, following exposure to a bitter-tasting bead (100% methylanthranilate). Results showed that memory was intact at 10 min in both isolated and paired chicks with or without MF exposure. However, while isolated chicks had good memory retention levels at 30 and 120 min, those exposed to MF did not. The results suggest a potential disruption of memory formation following in ovo exposure to MF, with this effect only evident in the more stressed, isolated chicks. Bioelectromagnetics 31:150-155, 2010. (C) 2009 Wiley-Liss. Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beijing University of Technology (BJUT); Beijing Municipal Lab of Brain Informatics; Chinese Society of Radiology; National Natural Science Foundation of China (NSFC); State Administration of Foreign Experts Affairs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meng, Q., & Lee, M. (2005). Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics. Wermter, S., Palm, G., & Elshaw, M. (Eds.), In: Biomimetic Neural Learning for Intelligent Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience. (pp. 315-332). (Lecture Notes in Computer Science). Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M. H. Lee and Q. Meng, Growth of Motor Coordination in Early Robot Learning, IJCAI-05, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Garrett S.M. and Lee M.H., A Case-Based Approach to Black-Box Control Learning, Proc. Int. Conf. on Comutational Intelligence for Modelling, Control and Automation (CIMCA`99), 17-19 Feb. 1999. Vienna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Q. Meng and M. H. Lee, Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics, AI-Workshop on NeuroBotics, University of Ulm, Germany. September 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Q. Meng and M. H. Lee, Learning and Control in Assistive Robotics for the Elderly, IEEE Conference on Robotics, Automation and Mechatronics (RAM), Singapore, 2004.