930 resultados para robot automation
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
An ultrasonic thermometer has been developed for high temperature measurement over a wide temperature range. It is particularly suitable for use in measuring nuclear fuel rod centerline temperatures in advanced liquid metal and high flux nuclear reactors. The thermometer which was designed to determine fuel temperature up to the fuel melting point, utilizes the temperature dependence of the ultrasonic propagation velocity (related to the elastic modulus} in a thin rod sensor as the temperature transducing mechanism. A pulse excitation technique has been used, where the mechanical resonator at the remote end of the acoustic·line is madto vibrate. Its natural frequency is proportional to the ultrasonic velocity in the material. This is measured by the electronic instrumentation and enables a frequency temperature or period-temperature calibration to be obtained. A completely digital automatic instrument has been designed, constructed and tested to track the resonance frequency of the temperature sensors. It operates smoothly over a frequency range of about 30%, more than the maximum working range of most probe materials. The control uses the basic property of a resonator that the stored energy decays exponentially at the natural frequency of the resonator.The operation of the electronic system is based on a digital multichannel transmitter that is capable of operating with a predefined number of cycles in the burst. this overcomes a basic defect in the previous deslgn where the analogue time-delayed circuits failed to hold synchronization and hence automatic control could be lost. Development of a particular type of temperature probe, that is small enough to fit into a standard 2 mm reactor tube has made the ultrasonic thermometer a practicable device for measuring fuel temperature. The bulkiness of previous probes has been overcome, the new design consists of a tuning fork, integral with a 1mm line, while maintaining a frequency of no more than 100 kHz. A magnetostrictive rod, acoustically matched to the probe is used to launch and receive the acoustic oscillations. This requires a magnetic bias and the previously used bulky magnets have been replaced by a direct current coil. The probe is supported by terminating the launcher with a short heavy isolating rod which can be secured to the reactor structure. This support, the bias and launching coil and the launcher are made up into a single compact unit. On the material side an extensive study of a wide range of refractory materials identified molybdenum, iridium, rhenium and tungsten as satisfactory for a number of applications but mostly exhibiting to some degree a calibration drift with thermal cycling. When attention was directed to ceramic materials, Sapphire (single crystal alumina) was found to have numerous advantages, particularly in respect of stability of calibration which remained with ±2°C after many cycles to 1800oC. Tungsten and thoriated tungsten (W - 2% Tho2) were also found to be quite satisfactory to 1600oC, the specification for a Euratom application.
Resumo:
Despite the considerable potential of advanced manufacturing technologies (AMT) for improving the economic performance of many firms, a growing body of literature highlights many instances where realising this potential has proven to be a more difficult task than initially envisaged. Focussing upon the implementation of new manufacturing technologies in several smaller to medium sized enterprises (SME), the research examines the proposition that many of these problems can be attributed in part to inadequate consideration of the integrated nature of such technologies, where the effects of their implementation are not localised, but are felt throughout a business. The criteria for the economic evaluation of such technologies are seen as needing to reflect this, and the research develops an innovative methodology employing micro-computer based spreadsheets, to demonstrate how a series of financial models can be used to quantify the effects of new investments upon overall company performance. Case studies include: the development of a prototype machine based absorption costing system to assist in the evaluation of CNC machine tool purchases in a press making company; the economics and strategy of introducing a flexible manufacturing system for the production of ballscrews; and analysing the progressive introduction of computer based printing presses in a packaging and general print company. Complementary insights are also provided from discussion with the management of several other companies which have experienced technological change. The research was conducted as a collaborative CASE project in the Interdisciplinary Higher Degrees Scheme and was jointly funded by the SERC and Gaydon Technology Limited and later assisted by PE-Inbucon. The findings of the research shows that the introduction of new manufacturing technologies usually requires a fundamental rethink of the existing practices of a business. In particular, its implementation is seen as ideally needing to take place as part of a longer term business and manufacturing strategy, but that short term commercial pressures and limited resources often mean that firms experience difficulty in realising this. The use of a spreadsheet based methodology is shown to be of considerable assistance in evaluating new investments, and is seen as being the limit of sophistication that a smaller business is willing to employ. Several points for effective modelling practice are also given, together with an outline of the context in which a modelling approach is most applicable.
Resumo:
The high capital cost of robots prohibit their economic application. One method of making their application more economic is to increase their operating speed. This can be done in a number of ways e.g. redesign of robot geometry, improving actuators and improving control system design. In this thesis the control system design is considered. It is identified in the literature review that two aspects in relation to robot control system design have not been addressed in any great detail by previous researchers. These are: how significant are the coupling terms in the dynamic equations of the robot and what is the effect of the coupling terms on the performance of a number of typical independent axis control schemes?. The work in this thesis addresses these two questions in detail. A program was designed to automatically calculate the path and trajectory and to calculate the significance of the coupling terms in an example application of a robot manipulator tracking a part on a moving conveyor. The inertial and velocity coupling terms have been shown to be of significance when the manipulator was considered to be directly driven. A simulation of the robot manipulator following the planned trajectory has been established in order to assess the performance of the independent axis control strategies. The inertial coupling was shown to reinforce the control torque at the corner points of the trajectory, where there was an abrupt demand in acceleration in each axis but of opposite sign. This reduced the tracking error however, this effect was not controllable. A second effect was due to the velocity coupling terms. At high trajectory speeds it was shown, by means of a root locus analysis, that the velocity coupling terms caused the system to become unstable.
Resumo:
This study was concerned with the computer automation of land evaluation. This is a broad subject with many issues to be resolved, so the study concentrated on three key problems: knowledge based programming; the integration of spatial information from remote sensing and other sources; and the inclusion of socio-economic information into the land evaluation analysis. Land evaluation and land use planning were considered in the context of overseas projects in the developing world. Knowledge based systems were found to provide significant advantages over conventional programming techniques for some aspects of the land evaluation process. Declarative languages, in particular Prolog, were ideally suited to integration of social information which changes with every situation. Rule-based expert system shells were also found to be suitable for this role, including knowledge acquisition at the interview stage. All the expert system shells examined suffered from very limited constraints to problem size, but new products now overcome this. Inductive expert system shells were useful as a guide to knowledge gaps and possible relationships, but the number of examples required was unrealistic for typical land use planning situations. The accuracy of classified satellite imagery was significantly enhanced by integrating spatial information on soil distribution for Thailand data. Estimates of the rice producing area were substantially improved (30% change in area) by the addition of soil information. Image processing work on Mozambique showed that satellite remote sensing was a useful tool in stratifying vegetation cover at provincial level to identify key development areas, but its full utility could not be realised on typical planning projects, without treatment as part of a complete spatial information system.