892 resultados para pseudo-utility
Resumo:
DNA-binding proteins are crucial for various cellular processes and hence have become an important target for both basic research and drug development. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to establish an automated method for rapidly and accurately identifying DNA-binding proteins based on their sequence information alone. Owing to the fact that all biological species have developed beginning from a very limited number of ancestral species, it is important to take into account the evolutionary information in developing such a high-throughput tool. In view of this, a new predictor was proposed by incorporating the evolutionary information into the general form of pseudo amino acid composition via the top-n-gram approach. It was observed by comparing the new predictor with the existing methods via both jackknife test and independent data-set test that the new predictor outperformed its counterparts. It is anticipated that the new predictor may become a useful vehicle for identifying DNA-binding proteins. It has not escaped our notice that the novel approach to extract evolutionary information into the formulation of statistical samples can be used to identify many other protein attributes as well.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.
Well-Posedness of the Cauchy Problem for Inhomogeneous Time-Fractional Pseudo-Differential Equations
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12
Resumo:
Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30
Resumo:
MSC 2010: 03E72, 26E50, 28E10
Resumo:
Volunteered Service Composition (VSC) refers to the process of composing volunteered services and resources. These services are typically published to a pool of voluntary resources. The composition aims at satisfying some objectives (e.g. Utilizing storage and eliminating waste, sharing space and optimizing for energy, reducing computational cost etc.). In cases when a single volunteered service does not satisfy a request, VSC will be required. In this paper, we contribute to three approaches for composing volunteered services: these are exhaustive, naïve and utility-based search approach to VSC. The proposed new utility-based approach, for instance, is based on measuring the utility that each volunteered service can provide to each request and systematically selects the one with the highest utility. We found that the utility-based approach tend to be more effective and efficient when selecting services, while minimizing resource waste when compared to the other two approaches.
Resumo:
Митрофан М. Чобан, Петър Ст. Кендеров, Уорън Б. Муурс - Полу-топологична група (съответно, топологична група) е група, снабдена с топология, относно която груповата оперция произведение е частично непрекъсната по всяка от променливите (съответно, непрекъсната по съвкупност от променливите и обратната операция е също непрекъсната). В настоящата работа ние даваме условия, от топологичен характер, една полу-топологична група да е всъщност топологична група. Например, ние показваме, че всяка сепарабелна псевдокомпактна полу-топологична група е топологична група. Показваме също, че всяка локално псевдокомпактна полу-топологична група, чиято групова операция е непрекъсната по съвкупност от променливите е топологична група.
Resumo:
AMS subject classification: 90C05, 90A14.
Resumo:
2002 Mathematics Subject Classification: 35S05, 47G30, 58J42.
Resumo:
2000 Mathematics Subject Classification: 35C15, 35D05, 35D10, 35S10, 35S99.
Resumo:
2000 Mathematics Subject Classification: 53C40, 53B25.
Resumo:
2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.
Resumo:
Pavement analysis and design for fatigue cracking involves a number of practical problems like material assessment/screening and performance prediction. A mechanics-aided method can answer these questions with satisfactory accuracy in a convenient way when it is appropriately implemented. This paper presents two techniques to implement the pseudo J-integral based Paris’ law to evaluate and predict fatigue cracking in asphalt mixtures and pavements. The first technique, quasi-elastic simulation, provides a rational and appropriate reference modulus for the pseudo analysis (i.e., viscoelastic to elastic conversion) by making use of the widely used material property: dynamic modulus. The physical significance of the quasi-elastic simulation is clarified. Introduction of this technique facilitates the implementation of the fracture mechanics models as well as continuum damage mechanics models to characterize fatigue cracking in asphalt pavements. The second technique about modeling fracture coefficients of the pseudo J-integral based Paris’ law simplifies the prediction of fatigue cracking without performing fatigue tests. The developed prediction models for the fracture coefficients rely on readily available mixture design properties that directly affect the fatigue performance, including the relaxation modulus, air void content, asphalt binder content, and aggregate gradation. Sufficient data are collected to develop such prediction models and the R2 values are around 0.9. The presented case studies serve as examples to illustrate how the pseudo J-integral based Paris’ law predicts fatigue resistance of asphalt mixtures and assesses fatigue performance of asphalt pavements. Future applications include the estimation of fatigue life of asphalt mixtures/pavements through a distinct criterion that defines fatigue failure by its physical significance.
Resumo:
The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient’s visual function.