989 resultados para plume
Resumo:
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
Resumo:
The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.
Resumo:
A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.
Resumo:
DSDP Leg 92 drilled at four sites along an east-west transect at 19°S on the western flank of the East Pacific Rise (EPR), in an area where sediments are essentially a mixture of hydrothermal and biogenic components, with only a minimal contribution of clastic material. Rare-earth element (REE) data on the metalliferous (non-carbonate) fraction of samples ranging in age from ~2 to ~27 Ma indicate the existence of two distinct groups of patterns corresponding to two broad age groups, one <=8 Ma, the other >=10 Ma. Within each group, REE patterns have characteristics which are near-uniform, despite large variations in total REE abundances. Sediments of the younger group are enriched in light REE (LREE) relative to deep bottom waters influenced by the hydrothermal plume extending west from the EPR at 19°S. Sediments of the older groups show further relative LREE enrichment and/or heavy REE (HREE) depletion. Surficial sediments deposited beneath the lysocline have high Sum REE concentrations resulting from slow accumulation rates, and patterns resembling older sediments due to early diagenetic effects. A correlation between the mass accumulation rates (MAR) of Sum REE and Fe + Mn suggests that ferromanganese particulate matter supplied by the hydrothermal plume scavenges REE; during this process the LREE are preferentially removed from plume seawater. The MAR of Fe + Mn shows a general decrease with age above basement, whereas Sum REE concentrations in the metalliferous component increase with age above basement. This supports the Ruhlin and Owen model wherein limited scavenging of REE, due to rapid burial of sediment near the palaeo-axis, leads to low concentrations (but high MAR-values) for the REE. Following deposition and burial of the hydrothermal component, further relative flattening of the REE pattern takes place, probably the result of diagenetic reactions over several million years. Phase partitioning data indicate that the proportion of REE residing in more poorly crystalline phases tends to increase with age (from ~45% to 90% of Sum REE). This suggests that as initial ferromanganese precipitates undergo diagenetic recrystallization, REE are transferred to the poorly crystalline phases, and/or are scavenged from pore waters by these phases. Because of the various modifications to REE patterns apparently produced both in the water column and post-depositional settings, the REE patterns of metalliferous sediments will not reflect fine-scale REE variations in associated oceanic water masses.
Resumo:
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.
Resumo:
The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.
Resumo:
Study of basaltic debris from the Kara Sea bottom has shown its similarity to traps of the Eastern Siberia in mineralogy, structures and chemical composition. In comparison with oceanic tholeiites, the source of traps and Kara Sea basin basaltic melts was enriched in REE and some other incompatible elements. K-Ar dating of two samples of supposed autochtonous location from the eastern part of the Kara Sea basin has shown 209 and 218 Ma - younger than traps (247-248 Ma). Origin of Siberian traps used to connect with action of the mantle plume (Iceland plume, according to geodinamic reconstruction). Our new age data may be interpreted as an evidence of the Siberian plate moving over the head of plume.
Resumo:
Characteristic remanent magnetizations derived from detailed thermal and alternating-field demagnetization of basalts recovered at Ocean Drilling Program (ODP) Site 807 on the Ontong Java Plateau reveal constant normal polarity consistent with paleontological ages from overlying sediments, suggesting deposition in early Aptian times at the beginning of the Cretaceous Normal Polarity Superchron (K-N). The paleomagnetic data can be divided into 14 distinct inclination groups, which together define a paleolatitude of 18°S, some 16° shallower than expected from a Pacific apparent polar wander path (APWP) based on nonsedimentary data. The data display a trend in paleomagnetic inclination, showing shallower values with increasing depth. We conclude that this trend is a result of local tectonic tilting during the waning phases of volcanism on the plateau. Hotspot-based plate reconstructions for the Early Cretaceous place the Ontong Java Plateau on the Louisville hotspot, presently located at 51°S, whereas the paleolatitude for Site 807 based on the Pacific APWP is 34°S. Because the nominal mean inclination from Site 807 and values derived from Deep Sea Drilling Project (DSDP) sediments of other sites predict shallower paleolatitudes for the Ontong Java Plateau, values from the Pacific APWP provide lower bounds on true polar wander. Considering mantle plume sources on the southern and northern portions of the plateau (DSDP Site 288 and ODP Site 807, respectively), the Louisville hotspot appears to have moved 9°-17° to the south relative to the spin axis since the Early Cretaceous. This sense of motion is consistent with previous results for the Suiko Seamount (65 Ma) of the Hawaiian-Emperor Chain.
Resumo:
High-resolution analyses of sediments at equatorial Atlantic Sites 662, 663, and 664 define the accumulation rates of biogenically produced CaC03 and opal and of eolian dust from North Africa over the last 3.7 m.y. The mean flux of opal increased abruptly by 60%-70% near 2.5 Ma (2.65 to 2.3 Ma), reflecting pulses of increased opal productivity along the equator due mainly to increased upwelling. The mean winter-plume dust influx from Sahelian and Saharan Africa also increased at this time by between 35% and 75%, following smaller increases earlier in the late Pliocene. The increased opal flux implies a stronger zonal component of the southern trade winds in Southern Hemisphere winter. Consistent with this wind configuration, the stronger dust flux suggests a weaker southwesterly monsoonal flow into Africa in Northern Hemisphere summer, thus increasing Sahelian aridity and winter-plume dust fluxes. Dust fluxes to the equator may possibly have also been enhanced by stronger Northern Hemisphere winter trade winds and a more southerly position of the Intertropical Convergence Zone over Africa. These late Pliocene biogenic and terrigenous flux changes coincided with the appearance of Northern Hemisphere ice sheets, implying an ultimate causal link. The immediate control on changes in tropical circulation may, however, have been changes in the Atlantic sector of the Southern Ocean. A steady background trend of increasing winter-plume dust flux occurred from the late Pliocene until the middle Pleistocene. This may reflect a progressive, tectonically induced aridification of northern and eastern Africa because of the gradual uplift of the Tibetan Plateau.