683 resultados para pipe
Resumo:
The successive stages of oogenesis and the changes involved in the oocyte degeneration process in the penshell Atrina maura were examined using light and transmission electron microscopy. The ovarian maturation process is asynchronous, as oocytes at different developmental stages can be found simultaneously. Oocytes develop from oogonia and then undergo three distinct stages of oogenesis: previtellogenesis, vitellogenesis and postvitellogenesis with mature oocytes. Atrina maura displays a solitary oogenesis type, in which follicular cells become associated with oocytes from the earliest stages of development and seem to play an integral role in vitellogenesis. The cytoplasm of vitellogenic oocytes contains numerous whorls of rough endoplasmic reticulum and Golgi bodies, suggesting that auto-synthetic vitellogenesis may occur in this species. In addition, the degeneration process of postvitellogenic oocytes triggered by a seasonal increase in water temperature (> 25°C) is described.
Resumo:
Smoking is one of the leading causes of preventable death. In recent years, numerous countries have initiated the prohibition of smoking in restaurants, workplaces and public spaces. The Vietnamese government intends to follow the precautions against public smoking as well. Over and above the number of some hazardous chemical components found in tobacco, 210Po isotope content could enhance the probability of the development of lung cancer. In this study 14 Vietnamese tobacco products (commercial cigarettes and pipe tobacco) 210Po activity concentration were determined using PIPS semiconductor alpha spectrometry. The results showed that the 210Po activity concentration of the investigated samples varied between 7.40 ± 1.09 - 128.64 ± 11.22 mBq g-1. The average 210Po content of commercial cigarettes was 15.5 mBq g-1, whilst the average of pipe tobacco was 20.4 mBq g-1. To estimate the risk of inhalation of 210Po isotopes originating as a result of smoking, dose estimations were carried out. © Versita Sp. z o.o.
Resumo:
Concrete solar collectors offer a type of solar collector with structural, aesthetic and economic advantages over current populartechnologies. This study examines the influential parameters of concrete solar collectors. In addition to the external conditions,the performance of a concrete solar collector is influenced by the thermal properties of the concrete matrix, piping network andfluid. Geometric and fluid flow parameters also influence the performance of the concrete solar collector. A literature review ofconcrete solar collectors is conducted in order to define the benchmark parameters from which individual parameters are thencompared. The numerical model consists of a 1D pipe flow network coupled with the heat transfer in a 3D concrete domain. Thispaper is concerned with the physical parameters that define the concrete solar collector, thus a constant surface temperature isused as the exposed surface boundary condition with all other surfaces being insulated. Results show that, of the parametersinvestigated, the pipe spacing, ps, concrete conductivity, kc, and the pipe embedment depth, demb, are among those parameterswhich have greatest effect on the collector’s performance. The optimum balance between these parameters is presented withrespect to the thermal performance and discussed with reference to practical development issues.
Resumo:
Den här studien, som har bedrivits i samarbete med konsultföretaget Pipe, har studerat informationshanteringsprocessen hos småföretag inom retailbranschen. Företaget som ägnar sig åt butiksplanering med hjälp av CAD-program har idag ingen koppling mellan CAD-programmet och den molndatabas som lagrar information. Syftet med arbetet är att beskriva hur ett åtgärdsförslag skulle kunna se ut för att företaget ska kunna förbättra sin informationshantering genom användandet utav en molndatabas. Vi har även beskrivit problemområdet kring kopplingar mellanmolndatabaser och designprogram. För att besvara studiens syfte har vi genomfört en fallstudie, och svaret på forskningsfrågorna, 1. Hur ser informationshanteringsprocessen ut idag? 2. Hur kan informationshanteringsprocessen förbättras? 2. Vilka arbetssteg skulle kunna tas bort om företaget inför en koppling mellanmolndatabasen och designprogrammet? 3. Är en molnbaserad lösning ett möjligt alternativ för att använda för småföretag i retailbranschen? 4. Hur ser det ut i andra branscher som använder sig av CAD-program? Har vi hittat genom att genomföra intervjuer. Intervjuerna har hjälpt oss att genomföra en förändringsanalys där vi genom handlingsgrafer och mål- och problemlistor har kommit fram till ett antal åtgärdsförslag som företaget bör genomföra för att förbättra sin informationshanteringsprocess. Utifrån förändringsanalysen har vi kunnat dra slutsatsen att informationshanteringsprocessen skulle kunna förbättras och snabbas upp genom att införa en koppling mellan designprogrammet och en molndatabas. Detta skulle innebära att material automatiskt laddas upp från designprogrammet tillmolndatabasen, som även kunden har tillgång till. På så sätt samlas all information på ett och samma ställe. Genom litteraturstudier har vi också kommit fram till att en molnbaserad lösning vore möjligt för företaget, då det är en billig och smidig lösning för företag som inte har så stora resurser.
Resumo:
This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI(Tl) detectors adequately positioned on the outside of pipe and a gamma-ray source (82Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones.
Resumo:
Contexto: O trabalho que a seguir se apresenta foi elaborado no âmbito de um novo conceito na gestão do desempenho organizacional, a gestão estratégica multidimensional, onde a neuroeconomia foi associada à perspetiva teórica da gestão estratégica de recursos humanos (Dessler, 2005) e à aplicação do sistema de gestão da qualidade (SGQ), da NP 9001: 2008 (Saraiva e tal, 2009), para formar um método eficaz de conceção dos percursos de operacionalização da organização Objetivos: Pretendeu-se construir uma forma anatómica de gestão de desempenho organizacional através dos três conceitos mencionados, num contexto de gestão estratégica multidimensional, possibilitando a sua quantificação pelo nível de implementação dos requisitos para um sistema de gestão de qualidade, com o intuito de verificar sua viabilidade, sendo a resiliência organizacional dependente em grande medida dos recursos humanos, Método: Pelo conjunto das três áreas mencionadas foi criado um guia de atuação abrangendo as bases fundamentais para o desenvolvimento de uma estrutura organizacional: verificação dos níveis de incidência da gestão do desempenho organizacional; caracterização de diferentes tipos de estratégias de intervenção; implementação de estratégias preventivas e estratégias corretivas; utilização das quatro dimensões PIPE – performance, inovação, processos e empenhamento – como estratégias corretivas; integração das estratégias preventivas com as estratégias corretivas; diagnóstico contínuo de situações problema na gestão do desempenho organizacional; conceção de percursos de intervenção na gestão do desempenho organizacional; conceção de um projeto de gestão estratégica. A amostra final é constituída por uma organização do 3ºsetor, nomeadamente uma IPSS, a Associação Recreativa Cultural e Social das Gândaras, na Lousã, no distrito de Coimbra. Resultados: Com efeito, acredita-se que com este trabalho seja possível quantificar o nível de implementação dos requisitos para um SGQ num contexto de gestão estratégica multidimensional. / Context: The work presented below was prepared as part of a new concept in the management of organizational performance, the multidimensional strategic management, which was associated the neuroeconomics perspetive with the human resourses strategic management (Dessler, 2005) and the application of the quality management system (QMS), NP 9001: 2008 (and such Saraiva, 2009), to form an effective method of conception paths of operation of the organization Objetives: It was intended to build an anatomical shape organizational performance management across the three concepts mentioned in the context of multidimensional strategic management, enabling to quantify the level of implementation of the requirements for a quality management system, in order to verify their viability , and the organizational resilience largely dependent on human resources. Method: For all the three areas mentioned has created an action guide covering the fundamentals for developing an organizational structure: the verification of the incidence levels of organizational performance management; characterization of different types of intervention strategies; implementation of preventive strategies and corrective strategies, using the four dimensions PIPE - performance, innovation, processes and commitment - as corrective strategies; integration of preventive strategies with remedial strategies; diagnosis of problem situations in the ongoing management of organizational performance; conception pathways of intervention in the management of organizational performance; conception of a project of strategic management. The final sample consists of an organization of the 3rd setor, an IPSS, the Associação Recreativa Cultural e Social das Gândaras, in Lousã, in the district of Coimbra. Results: In fact, it is believed that this work is possible to quantify the level of implementation of the requirements for a QMS in a multidimensional context of strategic management.
Resumo:
A method is presented for evaluating the stress intensity factor of part-through cracks in a thin pipe elbow. A hybrid formulation solution is used to evaluate the stress field close to the crack area. The stress field values are then inputted into a previously developed method published in the literature to evaluate the stress intensity factor in cylindrical shells. Results from cylindrical shells with part-through cracks are extended to double-curvature pipe configurations that contain the same kind of flaw.
Resumo:
The effect of Reynolds number variation in a vertical double pipe counterflow heat exchanger due to the changes in viscosity can cause the change in flow regime, for instance, when heats up and cools down, it can convert from turbulent to laminar or inversely, that can have significant effect on heat transfer coefficient and pressure drop. Mainly, the range of transition phase has been studied in this study with the investigation of silica nanofluid dispersed in water in three different concentrations. The results have been compared with distilled water sample and showed a remarkable raise in heat transfer coefficient while pressure drop has been increased respectively, as well. Although pumping power has to go up at the same time and it is a drawback, heat transfer efficiency grows for diluted samples. On the other hand, for the most concentrated sample, effect of pressure drop dominates which leads to decline in the overall efficiency.
Resumo:
Water systems in the Sultanate of Oman are inevitably exposed to varied threats and hazards due to both natural and man-made hazards. Natural disasters, especially tropical cyclone Gonu in 2007, cause immense damage to water supply systems in Oman. At the same time water loss from leaks is a major operational problem. This research developed an integrated approach to identify and rank the risks to the water sources, transmission pipelines and distribution networks in Oman and suggests appropriate mitigation measures. The system resilience was evaluated and an emergency response plan for the water supplies developed. The methodology involved mining the data held by the water supply utility for risk and resilience determination and operational data to support calculations of non-revenue water. Risk factors were identified, ranked and scored at a stakeholder workshop and the operational information required was principally gathered from interviews. Finally, an emergency response plan was developed by evaluating the risk and resilience factors. The risk analysis and assessment used a Coarse Risk Analysis (CRA) approach and risk scores were generated using a simple risk matrix based on WHO recommendations. The likelihoods and consequences of a wide range of hazardous events were identified through a key workshop and subsequent questionnaires. The thesis proposes a method of translating the detailed risk evaluations into resilience scores through a methodology used in transportation networks. A water audit indicated that the percentage of NRW in Oman is greater than 35% which is similar to other Gulf countries but high internationally. The principal strategy for managing NRW used in the research was the AWWA water audit method which includes free to use software and was found to be easy to apply in Oman. The research showed that risks to the main desalination processes can be controlled but the risk due to feed water quality might remain high even after implementing mitigation measures because the intake is close to an oil port with a significant risk of oil contamination and algal blooms. The most severe risks to transmission mains were found to be associated with pipe rather than pump failure. The systems in Oman were found to be moderately resilient, the resilience of desalination plants reasonably high but the transmission mains and pumping stations are very vulnerable. The integrated strategy developed in this study has a wide applicability, particularly in the Gulf area, which may have risks from exceptional events and will be experiencing NRW. Other developing countries may also experience such risks but with different magnitudes and the risk evaluation tables could provide a useful format for further work.
Resumo:
It is now clear that the concept of a HPC compiler which automatically produces highly efficient parallel implementations is a pipe-dream. Another route is to recognise from the outset that user information is required and to develop tools that embed user interaction in the transformation of code from scalar to parallel form, and then use conventional compilers with a set of communication calls. This represents the key idea underlying the development of the CAPTools software environment. The initial version of CAPTools is focused upon single block structured mesh computational mechanics codes. The capability for unstructured mesh codes is under test now and block structured meshes will be included next. The parallelisation process can be completed rapidly for modest codes and the parallel performance approaches that which is delivered by hand parallelisations.
Resumo:
The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.
Resumo:
The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.
Resumo:
This research project was driven by the recurring complaints and concerns voiced in the media by residents living in the Valley area of the community of Happy Valley-Goose Bay, Labrador. Drinking water in this town is supplied by two water treatment plants (a municipality treatment plant and a DND treatment plant), which use raw water from two different sources (groundwater from multiple wells versus surface water from Spring Gulch brook) and use two different processes of drinking-water treatment. In fact, the drinking water supplied in the Valley area has a unique distribution arrangement. To meet demand, the Valley area is served by a blend of treated waters from a storage reservoir (Sandhill reservoir), which is fed by both water treatment plants. Most of the time, treated water from the municipal treatment plant dominates in the mixture. As water travels through the distribution system and household plumbing, specific reactions can occur either in the water itself and/or at the solid–liquid interface at the pipe walls; this is strongly influenced by the physical and chemical characteristics of the water. These reactions can introduce undesirable chemical compounds and/or favor the growth of bacteria in the drinking water, causing the deterioration of the quality of water reaching the consumer taps. In the distribution system in general, these chemical constituents and bacteria may pose potential threats to health or the water’s aesthetic qualities (smell, taste or appearance). Drinking water should be not only safe, but also palatable.
Resumo:
Gas-liquid two-phase flow is very common in industrial applications, especially in the oil and gas, chemical, and nuclear industries. As operating conditions change such as the flow rates of the phases, the pipe diameter and physical properties of the fluids, different configurations called flow patterns take place. In the case of oil production, the most frequent pattern found is slug flow, in which continuous liquid plugs (liquid slugs) and gas-dominated regions (elongated bubbles) alternate. Offshore scenarios where the pipe lies onto the seabed with slight changes of direction are extremely common. With those scenarios and issues in mind, this work presents an experimental study of two-phase gas-liquid slug flows in a duct with a slight change of direction, represented by a horizontal section followed by a downward sloping pipe stretch. The experiments were carried out at NUEM (Núcleo de Escoamentos Multifásicos UTFPR). The flow initiated and developed under controlled conditions and their characteristic parameters were measured with resistive sensors installed at four pipe sections. Two high-speed cameras were also used. With the measured results, it was evaluated the influence of a slight direction change on the slug flow structures and on the transition between slug flow and stratified flow in the downward section.
Resumo:
Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.