1000 resultados para photoacoustic effects
Resumo:
Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7 ± 2.1. years, mean ± SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects' performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. BDNF gene may affect the intellectual performance by modulating the white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematicallyand categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
Naming an object entails a number of processing stages, including retrieval of a target lexical concept and encoding of its phonological word form. We investigated these stages using the picture-word interference task in an fMRI experiment. Participants named target pictures in the presence of auditorily presented semantically related, phonologically related, or unrelated distractor words or in isolation. We observed BOLD signal changes in left-hemisphere regions associated with lexical-conceptual and phonological processing, including the midto-posterior lateral temporal cortex. However, these BOLD responses manifested as signal reductions for all distractor conditions relative to naming alone. Compared with unrelated words, phonologically related distractors showed further signal reductions, whereas only the pars orbitalis of the left inferior frontal cortex showed a selective reduction in response in the semantic condition. We interpret these findings as indicating that the word forms of lexical competitors are phonologically encoded and that competition during lexical selection is reduced by phonologically related distractors. Since the extended nature of auditory presentation requires a large portion of a word to be presented before its meaning is accessed, we attribute the BOLD signal reductions observed for semantically related and unrelated words to lateral inhibition mechanisms engaged after target name selection has occurred, as has been proposed in some production models.
Resumo:
To investigate potentially dissociable recognition memory responses in the hippocampus and perirhinal cortex, fMRI studies have often used confidence ratings as an index of memory strength. Confidence ratings, although correlated with memory strength, also reflect sources of variability, including task-irrelevant item effects and differences both within and across individuals in terms of applying decision criteria to separate weak from strong memories. We presented words one, two, or four times at study in each of two different conditions, focused and divided attention, and then conducted separate fMRI analyses of correct old responses on the basis of subjective confidence ratings or estimates from single- versus dual-process recognition memory models. Overall, the effect of focussing attention on spaced repetitions at study manifested as enhanced recognition memory performance. Confidence- versus model-based analyses revealed disparate patterns of hippocampal and perirhinal cortex activity at both study and test and both within and across hemispheres. The failure to observe equivalent patterns of activity indicates that fMRI signals associated with subjective confidence ratings reflect additional sources of variability. The results are consistent with predictions of single-process models of recognition memory.
Resumo:
We used event-related fMRI to investigate the neural correlates of encoding strength and word frequency effects in recognition memory. At test, participants made Old/New decisions to intermixed low (LF) and high frequency (HF) words that had been presented once or twice at study and to new, unstudied words. The Old/New effect for all hits vs. correctly rejected unstudied words was associated with differential activity in multiple cortical regions, including the anterior medial temporal lobe (MTL), hippocampus, left lateral parietal cortex and anterior left inferior prefrontal cortex (LIPC). Items repeated at study had superior hit rates (HR) compared to items presented once and were associated with reduced activity in the right anterior MTL. By contrast, other regions that had shown conventional Old/New effects did not demonstrate modulation according to memory strength. A mirror effect for word frequency was demonstrated, with the LF word HR advantage associated with increased activity in the left lateral temporal cortex. However, none of the regions that had demonstrated Old/New item retrieval effects showed modulation according to word frequency. These findings are interpreted as supporting single-process memory models proposing a unitary strength-like memory signal and models attributing the LF word HR advantage to the greater lexico-semantic context-noise associated with HF words due to their being experienced in many pre-experimental contexts.
Resumo:
Word frequency (WF) and strength effects are two important phenomena associated with episodic memory. The former refers to the superior hit-rate (HR) for low (LF) compared to high frequency (HF) words in recognition memory, while the latter describes the incremental effect(s) upon HRs associated with repeating an item at study. Using the "subsequent memory" method with event-related fMRI, we tested the attention-at-encoding (AE) [M. Glanzer, J.K. Adams, The mirror effect in recognition memory: data and theory, J. Exp. Psychol.: Learn Mem. Cogn. 16 (1990) 5-16] explanation of the WF effect. In addition to investigating encoding strength, we addressed if study involves accessing prior representations of repeated items via the same mechanism as that at test [J.L. McClelland, M. Chappell, Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory, Psychol. Rev. 105 (1998) 724-760], entailing recollection [K.J. Malmberg, J.E. Holden, R.M. Shiffrin, Modeling the effects of repetitions, similarity, and normative word frequency on judgments of frequency and recognition memory, J. Exp. Psychol.: Learn Mem. Cogn. 30 (2004) 319-331] and whether less processing effort is entailed for encoding each repetition [M. Cary, L.M. Reder, A dual-process account of the list-length and strength-based mirror effects in recognition, J. Mem. Lang. 49 (2003) 231-248]. The increased BOLD responses observed in the left inferior prefrontal cortex (LIPC) for the WF effect provide support for an AE account. Less effort does appear to be required for encoding each repetition of an item, as reduced BOLD responses were observed in the LIPC and left lateral temporal cortex; both regions demonstrated increased responses in the conventional subsequent memory analysis. At test, a left lateral parietal BOLD response was observed for studied versus unstudied items, while only medial parietal activity was observed for repeated items at study, indicating that accessing prior representations at encoding does not necessarily occur via the same mechanism as that at test, and is unlikely to involve a conscious recall-like process such as recollection. This information may prove useful for constraining cognitive theories of episodic memory.
Resumo:
The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 1011 pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.
Resumo:
The SNP-SNP interactome has rarely been explored in the context of neuroimaging genetics mainly due to the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, specifically the iterative sure independence screening (SIS) method, have enabled the analysis of datasets where the number of predictors is much larger than the number of observations. Using an implementation of the SIS algorithm (called EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome to identify and prioritize SNPs for interaction analysis. We identified a significant SNP pair, rs1345203 and rs1213205, associated with temporal lobe volume. We further examined the full-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent dataset of healthy twins (QTIM). We found that each additional loading in the epistatic effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both the ADNI and QTIM samples.
Resumo:
Large multi-site image-analysis studies have successfully discovered genetic variants that affect brain structure in tens of thousands of subjects scanned worldwide. Candidate genes have also associated with brain integrity, measured using fractional anisotropy in diffusion tensor images (DTI). To evaluate the heritability and robustness of DTI measures as a target for genetic analysis, we compared 417 twins and siblings scanned on the same day on the same high field scanner (4-Tesla) with two protocols: (1) 94-directions; 2mm-thick slices, (2) 27-directions; 5mm-thickness. Using mean FA in white matter ROIs and FA skeletons derived using FSL, we (1) examined differences in voxelwise means, variances, and correlations among the measures; and (2) assessed heritability with structural equation models, using the classical twin design. FA measures from the genu of the corpus callosum were highly heritable, regardless of protocol. Genome-wide analysis of the genu mean FA revealed differences across protocols in the top associations.
Resumo:
Brain asymmetry has been a topic of interest for neuroscientists for many years. The advent of diffusion tensor imaging (DTI) allows researchers to extend the study of asymmetry to a microscopic scale by examining fiber integrity differences across hemispheres rather than the macroscopic differences in shape or structure volumes. Even so, the power to detect these microarchitectural differences depends on the sample size and how the brain images are registered and how many subjects are studied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins (45 identical and fraternal pairs) to a geometrically-centered population mean template. We computed voxelwise maps of significant asymmetries (left/right hemisphere differences) for common fiber anisotropy indices (FA, GA). Quantitative genetic models revealed that 47-62% of the variance in asymmetry was due to genetic differences in the population. We studied how these heritability estimates varied with the type of registration target (T1- or T2-weighted) and with sample size. All methods consistently found that genetic factors strongly determined the lateralization of fiber anisotropy, facilitating the quest for specific genes that might influence brain asymmetry and fiber integrity.
Resumo:
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.
Resumo:
The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10 -6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.
Resumo:
Several genetic variants are thought to influence white matter (WM) integrity, measured with diffusion tensor imaging (DTI). Voxel based methods can test genetic associations, but heavy multiple comparisons corrections are required to adjust for searching the whole brain and for all genetic variants analyzed. Thus, genetic associations are hard to detect even in large studies. Using a recently developed multi-SNP analysis, we examined the joint predictive power of a group of 18 cholesterol-related single nucleotide polymorphisms (SNPs) on WM integrity, measured by fractional anisotropy. To boost power, we limited the analysis to brain voxels that showed significant associations with total serum cholesterol levels. From this space, we identified two genes with effects that replicated in individual voxel-wise analyses of the whole brain. Multivariate analyses of genetic variants on a reduced anatomical search space may help to identify SNPs with strongest effects on the brain from a broad panel of genes.