975 resultados para peroxide bleaching
Resumo:
Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.
Resumo:
Objective - We hypothesized that reactive oxygen species ( ROS) contribute to progression of aortic valve ( AV) calcification/ stenosis. Methods and Results - We investigated ROS production and effects of antioxidants tempol and lipoic acid ( LA) in calcification progression in rabbits given 0.5% cholesterol diet +10(4) IU/d Vit.D-2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/ osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P) H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P <= 0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P) H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA. Conclusions - Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.
Resumo:
The Polynesia Mana Node of the southeast and central Pacific contains 7 independent or autonomous countries or territories with only 6,000 km2 of land on 347 islands, but surrounded by 12 million km2 of EEZ. These seas contain 13,000 km2 of coral reefs as the main natural ecosystem providing food resources and opportunities for development, especially for tourism and pearl culture for 500,000 inhabitants. During the 19th and first half of the 20th centuries, there was major exploitation by the colonial powers of mother-of-pearl oysters for the button industry, as well as guano, sandalwood and trepang. The Polynesian people were largely involved in a subsistence economy and all coral reefs and lagoons were healthy. During the last two decades of the 20th, all countries experienced rapid development and urbanization, rising populations, and some increased agriculture. These developments were limited to a few islands of each country (i.e. 15 islands amongst the 347) with resulting degradation of the coral reefs around these sites. The other islands remained mostly uninhabited and pristine, and continued with a subsistence economy. Generally, there was more damage to the coral reefs through natural events such as cyclones and coral bleaching, than by human activities. There is however, an urgent need to combat the threats on some islands from increased sedimentation, over-fishing, dredging and nutrient pollution.
Resumo:
Hyperhomocysteinaemia is an independent risk factor for CVD. Recent data show a relationship between homocysteine (Hcy) and free radical formation. Since creatine synthesis is responsible for most of the methyl group transfers that result in Hcy formation, creatine supplementation might inhibit Hcy production and reduce free radical formation. The present study investigated the effects of creatine supplementation on Hcy levels and lipid peroxidation biomarkers. Thirty rats were divided into three groups: control group; diet with creatine group (DCr; 2% creatine in the diet for 28 d); creatine overload plus diet with creatine group (CrO + D; 5 g creatine/kg by oral administration for 5 d + 2 % in the diet for 23 d). Plasma Hcy was significantly lower (P<0.05) in DCr (7.5 (SD 1.2) mu mol/l) and CrO + D (7.2 (SD 1.7) mu mol/l) groups compared with the control group (12.4 (SD 2.2) mu mol/l). Both plasma thiobarbituric acid-reactive species (TBARS) (control, 10 (SD 3.4); DCr, 4.9 (So 0.7); CrO + D, 2.4 (SD 1) mu mol/l) and plasma total glutathione (control, 4.3 (SD 1.9); DCr, 2.5 (SD 0.8); CrO + D, 1.8 (SD 0.5) mu mol/l) were lower in the groups that received creatine (P<0.05). In addition, Hcy showed significant negative correlation (P<0.05) with plasma creatine (r - 0.61) and positive correlation with plasma TBARS (r 0.74). Plasma creatine was negatively correlated with plasma TBARS (r - 0.75) and total peroxide (r - 0.40). We conclude that creatine supplementation reduces plasma Hcy levels and lipid peroxidation biomarkers, suggesting a protective role against oxidative damage. Modulating Hcy fort-nation may, however, influence glutathione synthesis and thereby affect the redox state of the cells.
Resumo:
Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid found in a variety of plants. The main symptoms of MCT toxicosis in livestock are related to hepato- and nephrotoxicity; in rodents and humans, the induction of a pulmonary hypertensive state that progresses to cor pulmonale has received much attention. Although studies have shown that MCT can cause effects on cellular functions that would be critical to those of lymphocytes/macrophages during a normal immune response, no immunotoxicological study on MCT have yet to ever be performed. Thus, the aim of the present study was to evaluate the effect of MCT on different branches of the immune system using the rat - which is known to be sensitive to the effects of MCT - as the model. Rats were treated once a day by gavage with 0.0, 0.3, 1.0, 3.0, or 5.0 mg MCT/kg for 14 days, and then any effects of the alkaloid on lymphoid organs, acquired immune responses, and macrophage activity were evaluated. No alterations in the relative weight of lymphoid organs were observed; however, diminished bone marrow cellularity in rats treated with the alkaloid was observed. MCT did not affect humoral or cellular immune responses. When macrophages were evaluated, treatments with MCT caused no significant alterations in phagocytic function or in hydrogen peroxide (H(2)O(2)) production; however, the MCT did cause compromised nitric oxide (NO) release by these cells.
Resumo:
Objective: Prolactin (PRL), a peptide hormone produced by the pituitary gland, is involved in the interaction between the neuroendocrine and immune system. Since dopamine receptor antagonists increase serum levels of PRL, both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing means of communication between the nervous and immune systems. This study evaluated the effects of PRL and the dopamine antagonist domperidone (DOMP) on macrophage activity of female rats. Methods: Oxidative burst and phagocytosis of peritoneal macrophages were evaluated by flow cytometry. Samples of peritoneal liquid from female rats were first incubated with PRL (10 and 100 nM) for different periods. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Results: In vitro incubation of macrophages with 10 nM DOMP decreased oxidative burst, after 30 min, whereas the PMA-induced burst was decreased by DOMP 10 nM after 2 and 4 h. Treatment with PRL (10 and 100 nM) for 30 min decreased oxidative burst and rate of phagocytosis (10 nM). After 2 h of incubation, 10 nM PRL decreased oxidative burst and phagocytosis intensity, but increased the rate of phagocytosis. On the other hand, after 4 h, PRL 10 and 100 nM increased oxidative burst and the rate of phagocytosis, but decreased intensity of phagocytosis. Conclusions: These observations suggest that macrophage functions are regulated by an endogenous dopaminergic tone. Our data also suggest that both PRL and dopamine exert their action by acting directly on the peritoneal macrophage. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
This study aimed to test the hypothesis that dentine alterations induced by 810 nm-diode laser may affect the interaction between root canal sealers and the dentin wall. Seventy-two single root human teeth were selected and root canals were enlarged with K-files. Dentine was treated with 0.5% NaOCl and 17% EDTA-T and irradiated (laser group) by diode laser (810 nm/P = 2.5W/I = 1989 W/cm(2)) or remained non-irradiated (control group). Six samples per group were analyzed by scanning electron microscopy (SEM). The remaining samples of each group were divided into three subgroups (n = 10) and sealed with one of the tested sealers (N-Rickert/AHPlus (TM)/Apexit (R)). Apical leakage was estimated by evaluating penetration of 0.5% methylene-blue dye. SEM analysis revealed that dentine at the apical third in irradiated samples was melted and fusioned whereas non-irradiated samples exhibited opened dentinal tubules. Despite the morphological changes induced by irradiation, laser did not affect the sealing ability of N-Rickert and AHPlus (TM) sealers. However, the length of apical leakage in roots filled with Apexit (R) was lower in irradiated root canals than in non-irradiated samples (p < 0.05). Morphological changes of root canal walls promoted by diode laser irradiation may improve de sealing ability of Apexit (R), a calcium hydroxide-based sealer, suggesting that improved sealing promoted by irradiation may represent an additional factor contributing to the endodontic clinical outcome.
Resumo:
Purpose: The aim of this study was to detect the influence of (1) storage period of heparinized blood, (2) type of blood and presence of contaminant, (3) application mode of cleansing agents, and (4) efficacy of cleansing agents on contaminated enamel and dentin during the adhesion process of a one-step adhesive system. Materials and Methods: One hundred four human molars were sectioned into halves along the long axis for enamel and dentin tests. Heparinized and fresh blood were obtained from the same donor, applied and dried to maintain a layer of dry blood on the top of samples. The cleansing agents used were hydrogen peroxide, anionic detergent, and antiseptic solution. A one-step adhesive system (Clearfil S3 Bond) was applied on the dental surface, and composite resin cylinders were built up using Tygon tubing molds. After 24 h, the mu SBS test (1 mm/min) and fracture analysis were performed. Results: There was no statistically significant difference in bond strength values regarding the storage period of heparinized blood and the types of blood. Groups without contamination presented higher bond strengths than contaminated groups. The application mode of the cleansing agents had no influence on bond strength results. There was no statistically significant difference among cleansing agents and they were as effective as a water stream in counteracting the effect of blood contamination. Conclusion: Heparinized blood can be used as a contaminant for up to one week, and it is a reliable procedure to standardize the contaminant. The cleansing agents can be used without friction. A water stream is sufficient to remove blood contamination from dental tissues, before the application of a one-step adhesive system.
Resumo:
Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p <= 0.05). Dental pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.
Resumo:
Dry socket is one of the most studied complications in dentistry, and a great number of studies have searched for an effective and safe method for its prevention and treatment. One of the great clinical challenges since the first case was reported has been the inconsistency and differences in the various definitions of dry socket and the criteria used for diagnosis. The pathophysiology, etiology, prevention, and treatment of dry socket are very important in the practice of oral surgery. The aim of the present report was to review and discuss each aspect. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 68:1922-1932, 2010
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.