977 resultados para octonion algebra
Resumo:
We construct an infinite dimensional non-unital Banach algebra $A$ and $a\in A$ such that the sets $\{za^n:z\in\C,\ n\in\N\}$ and $\{({\bf 1}+a)^na:n\in\N\}$ are both dense in $A$, where $\bf 1$ is the unity in the unitalization $A^{\#}=A\oplus \spann\{{\bf 1}\}$ of $A$. As a byproduct, we get a hypercyclic operator $T$ on a Banach space such that $T\oplus T$ is non-cyclic and $\sigma(T)=\{1\}$.
Resumo:
We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.
Resumo:
A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
Resumo:
A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. In
particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.
Resumo:
We adapt Quillen’s calculation of graded K-groups of Z-graded rings with support in N to graded K-theory, allowing gradings in a product Z×G with G an arbitrary group. This in turn allows us to use induction and calculate graded K-theory of Z -multigraded rings.
Resumo:
This paper describes the deployment on GPUs of PROP, a program of the 2DRMP suite which models electron collisions with H-like atoms and ions. Because performance on GPUs is better in single precision than in double precision, the numerical stability of the PROP program in single precision has been studied. The numerical quality of PROP results computed in single precision and their impact on the next program of the 2DRMP suite has been analyzed. Successive versions of the PROP program on GPUs have been developed in order to improve its performance. Particular attention has been paid to the optimization of data transfers and of linear algebra operations. Performance obtained on several architectures (including NVIDIA Fermi) are presented.
Resumo:
Let X be a connected, noetherian scheme and A{script} be a sheaf of Azumaya algebras on X, which is a locally free O{script}-module of rank a. We show that the kernel and cokernel of K(X) ? K(A{script}) are torsion groups with exponent a for some m and any i = 0, when X is regular or X is of dimension d with an ample sheaf (in this case m = d + 1). As a consequence, K(X, Z/m) ? K(A{script}, Z/m), for any m relatively prime to a. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Let C be a bounded cochain complex of finitely generatedfree modules over the Laurent polynomial ring L = R[x, x−1, y, y−1].The complex C is called R-finitely dominated if it is homotopy equivalentover R to a bounded complex of finitely generated projective Rmodules.Our main result characterises R-finitely dominated complexesin terms of Novikov cohomology: C is R-finitely dominated if andonly if eight complexes derived from C are acyclic; these complexes areC ⊗L R[[x, y]][(xy)−1] and C ⊗L R[x, x−1][[y]][y−1], and their variants obtainedby swapping x and y, and replacing either indeterminate by its inverse.
Resumo:
We prove that if G is S1 or a profinite group, then all of the homotopical information of the category of rational G-spectra is captured by the triangulated structure of the rational G-equivariant stable homotopy category.
That is, for G profinite or S1, the rational G-equivariant stable homotopy category is rigid. For the case of profinite groups this rigidity comes from an intrinsic formality statement, so we carefully relate the notion of intrinsic formality of a differential graded algebra to rigidity.
Resumo:
We undertake a detailed study of the sets of multiplicity in a second countable locally compact group G and their operator versions. We establish a symbolic calculus for normal completely bounded maps from the space B(L-2(G)) of bounded linear operators on L-2 (G) into the von Neumann algebra VN(G) of G and use it to show that a closed subset E subset of G is a set of multiplicity if and only if the set E* = {(s,t) is an element of G x G : ts(-1) is an element of E} is a set of operator multiplicity. Analogous results are established for M-1-sets and M-0-sets. We show that the property of being a set of multiplicity is preserved under various operations, including taking direct products, and establish an Inverse Image Theorem for such sets. We characterise the sets of finite width that are also sets of operator multiplicity, and show that every compact operator supported on a set of finite width can be approximated by sums of rank one operators supported on the same set. We show that, if G satisfies a mild approximation condition, pointwise multiplication by a given measurable function psi : G -> C defines a closable multiplier on the reduced C*-algebra G(r)*(G) of G if and only if Schur multiplication by the function N(psi): G x G -> C, given by N(psi)(s, t) = psi(ts(-1)), is a closable operator when viewed as a densely defined linear map on the space of compact operators on L-2(G). Similar results are obtained for multipliers on VN(C).
Resumo:
We show that, if M is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, L is a commutative subspace lattice and P is the lattice of all projections on a separable Hilbert space, then L⊗M⊗P is reflexive. If M is moreover an atomic Boolean subspace lattice while L is any subspace lattice, we provide a concrete lattice theoretic description of L⊗M in terms of projection valued functions defined on the set of atoms of M . As a consequence, we show that the Lattice Tensor Product Formula holds for AlgM and any other reflexive operator algebra and give several further corollaries of these results.
Resumo:
We consider in this paper the family of exponential Lie groups Gn,µ, whose Lie algebra is an extension of the Heisenberg Lie algebra by the reals and whose quotient group by the centre of the Heisenberg group is an ax + b-like group. The C*-algebras of the groups Gn,µ give new examples of almost C0(K)-C*-algebras.
Resumo:
Credal networks relax the precise probability requirement of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper, we present a new variable elimination algorithm for exactly computing posterior inferences in extensively specified credal networks, which is empirically shown to outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good approximation scheme, that is, a procedure that for any input is guaranteed to return a solution not worse than the optimum by a given factor. Remarkably, we show that when the networks have bounded treewidth and bounded number of states per variable the approximation algorithm runs in time polynomial in the input size and in the inverse of the error factor, thus being the first known fully polynomial-time approximation scheme for inference in credal networks.
Resumo:
Increased system variability and irregularity of parallelism in applications put increasing demands on the ef- ficiency of dynamic task schedulers. This paper presents a new design for a work-stealing scheduler supporting both Cilk- style recursively parallel code and parallelism deduced from dataflow dependences. Initial evaluation on a set of linear algebra kernels demonstrates that our scheduler outperforms PLASMA’s QUARK scheduler by up to 12% on a 16-thread Intel Xeon and by up to 50% on a 32-thread AMD Bulldozer.