972 resultados para nonlinear optimization
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
We report our studies of the linear and nonlinear rheology of aqueous solutions of the surfactant cetyl trimethylammonium tosylate (CTAT) with varying amounts of sodium chloride (NaCl). The CTAT concentration is fixed at 42 mM, and the salt concentration is varied between 0 and 120 mM. On increasing the salt (NaCl) concentration, we see three distinct regimes in the zero-shear viscosity and the high-frequency plateau modulus data. In regime 1, the zero-shear viscosity shows a weak increase with salt concentration due to enhanced micellar growth. The decrease in the zero-shear viscosities with salt concentration in regimes II and III can be explained in terms of intermicellar branching. The most intriguing feature of our data, however, is the anomalous behavior of the high-frequency plateau modulus in regime II (0.12 less than or equal to [NaCl]/[CTAT] less than or equal to 1.42). In this regime, the plateau modulus increases with an increase in NaCl concentration. This is highly interesting, since the correlation length of concentration fluctuations and hence the plateau modulus G(0) are not expected to change appreciably in the semidilute regime. We propose to explain the changes in regime II in terms of a possible unbinding of the organic counterions (tosylate) from the CTA(+) surfaces on the addition of NaCl. In the nonlinear flow curves of the samples with high salt content, significant deviations from the predictions of the Giesekus model for entangled micelles are observed.
Resumo:
We address the problem of allocating a single divisible good to a number of agents. The agents have concave valuation functions parameterized by a scalar type. The agents report only the type. The goal is to find allocatively efficient, strategy proof, nearly budget balanced mechanisms within the Groves class. Near budget balance is attained by returning as much of the received payments as rebates to agents. Two performance criteria are of interest: the maximum ratio of budget surplus to efficient surplus, and the expected budget surplus, within the class of linear rebate functions. The goal is to minimize them. Assuming that the valuation functions are known, we show that both problems reduce to convex optimization problems, where the convex constraint sets are characterized by a continuum of half-plane constraints parameterized by the vector of reported types. We then propose a randomized relaxation of these problems by sampling constraints. The relaxed problem is a linear programming problem (LP). We then identify the number of samples needed for ``near-feasibility'' of the relaxed constraint set. Under some conditions on the valuation function, we show that value of the approximate LP is close to the optimal value. Simulation results show significant improvements of our proposed method over the Vickrey-Clarke-Groves (VCG) mechanism without rebates. In the special case of indivisible goods, the mechanisms in this paper fall back to those proposed by Moulin, by Guo and Conitzer, and by Gujar and Narahari, without any need for randomization. Extension of the proposed mechanisms to situations when the valuation functions are not known to the central planner are also discussed. Note to Practitioners-Our results will be useful in all resource allocation problems that involve gathering of information privately held by strategic users, where the utilities are any concave function of the allocations, and where the resource planner is not interested in maximizing revenue, but in efficient sharing of the resource. Such situations arise quite often in fair sharing of internet resources, fair sharing of funds across departments within the same parent organization, auctioning of public goods, etc. We study methods to achieve near budget balance by first collecting payments according to the celebrated VCG mechanism, and then returning as much of the collected money as rebates. Our focus on linear rebate functions allows for easy implementation. The resulting convex optimization problem is solved via relaxation to a randomized linear programming problem, for which several efficient solvers exist. This relaxation is enabled by constraint sampling. Keeping practitioners in mind, we identify the number of samples that assures a desired level of ``near-feasibility'' with the desired confidence level. Our methodology will occasionally require subsidy from outside the system. We however demonstrate via simulation that, if the mechanism is repeated several times over independent instances, then past surplus can support the subsidy requirements. We also extend our results to situations where the strategic users' utility functions are not known to the allocating entity, a common situation in the context of internet users and other problems.
Resumo:
In this study, we investigated nonlinear measures of chaos of QT interval time series in 28 normal control subjects, 36 patients with panic disorder and 18 patients with major depression in supine and standing postures. We obtained the minimum embedding dimension (MED) and the largest Lyapunov exponent (LLE) of instantaneous heart rate (HR) and QT interval series. MED quantifies the system's complexity and LLE predictability. There was a significantly lower MED and a significantly increased LLE of QT interval time series in patients. Most importantly, nonlinear indices of QT/HR time series, MEDqthr (MED of QT/HR) and LLEqthr (LLE of QT/HR), were highly significantly different between controls and both patient groups in either posture. Results remained the same even after adjusting for age. The increased LLE of QT interval time, series in patients with anxiety and depression is in line with our previous findings of higher QTvi (QT variability index, a log ratio of QT variability corrected for mean QT squared divided by heart rate variability corrected for mean heart rate squared) in these patients, using linear techniques. Increased LLEqthr (LLE of QT/HR) may be a more sensitive tool to study cardiac repolarization and a valuable addition to the time domain measures such as QTvi. This is especially important in light of the finding that LLEqthr correlated poorly and nonsignificantly with QTvi. These findings suggest an increase in relative cardiac sympathetic activity and a decrease in certain aspects of cardiac vagal function in patients with anxiety as well as depression. The lack of correlation between QTvi and LLEqthr suggests that this nonlinear index is a valuable addition to the linear measures. These findings may also help to explain the higher incidence of cardiovascular mortality in patients with anxiety and depressive disorders. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This paper makes an attempt to assess the benefits of replacing a conventional generator excitation system (AVR + PSS) with a nonlinear voltage regulator using the concepts of synchronizing and damping torque components in a single machine infinite bus (SMIB) system. In recent years, there has been considerable interest in designing nonlinear excitation controllers, which are expected to give better dynamic performance over a wider range of system and operating conditions. The performance of these controllers is often justified by simulation studies on few test cases which may not adequately represent the diverse operating conditions of a typical power system. The performance of two such nonlinear controllers which are designed based on feedback linearization and include automatic voltage regulation with good dynamic performance have been analyzed using an SMIB model. Linearizing the nonlinear control laws along with the SMIB system equations, a Heffron Phillip's type of a model has been derived. Concepts of synchronizing and damping torque components have been used to show that such controllers can impair the small signal stability under certain operating conditions. This paper shows the possibility of negative damping contribution due to nonlinear voltage regulators and gives a new insight on understanding the physical impact of complex nonlinear control laws on power system dynamics.
Resumo:
This paper proposes a nonlinear voltage regulator with one tunable parameter for multimachine power systems. Based on output feedback linearization, this regulator can achieve simultaneous voltage regulation and small-signal performance objectives. Conventionally output feedback linearization has been used for voltage regulator design by taking infinite bus voltage as reference. Unfortunately, this controller has poor small-signal performance and cannot be applied to multimachine systems without the estimation of the equivalent external reactance seen from the generator. This paper proposes a voltage regulator design by redefining the rotor angle at each generator with respect to the secondary voltage of the step-up transformer as reference instead of a common synchronously rotating reference frame. Using synchronizing and damping torques analysis, we show that the proposed voltage regulator achieves simultaneous voltage regulation and damping performance over a range of system and operating conditions by controlling the relative angle between the generator internal voltage angle delta and the secondary voltage of the step up transformer. The performance of the proposed voltage regulator is evaluated on a single machine infinite bus system and two widely used multimachine test systems.
Resumo:
In this paper analytical expressions for optimal Vdd and Vth to minimize energy for a given speed constraint are derived. These expressions are based on the EKV model for transistors and are valid in both strong inversion and sub threshold regions. The effect of gate leakage on the optimal Vdd and Vth is analyzed. A new gradient based algorithm for controlling Vdd and Vth based on delay and power monitoring results is proposed. A Vdd-Vth controller which uses the algorithm to dynamically control the supply and threshold voltage of a representative logic block (sum of absolute difference computation of an MPEG decoder) is designed. Simulation results using 65 nm predictive technology models are given.
Resumo:
Bid optimization is now becoming quite popular in sponsored search auctions on the Web. Given a keyword and the maximum willingness to pay of each advertiser interested in the keyword, the bid optimizer generates a profile of bids for the advertisers with the objective of maximizing customer retention without compromising the revenue of the search engine. In this paper, we present a bid optimization algorithm that is based on a Nash bargaining model where the first player is the search engine and the second player is a virtual agent representing all the bidders. We make the realistic assumption that each bidder specifies a maximum willingness to pay values and a discrete, finite set of bid values. We show that the Nash bargaining solution for this problem always lies on a certain edge of the convex hull such that one end point of the edge is the vector of maximum willingness to pay of all the bidders. We show that the other endpoint of this edge can be computed as a solution of a linear programming problem. We also show how the solution can be transformed to a bid profile of the advertisers.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.