952 resultados para nano zinc oxide
Resumo:
In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Zinc is present in high concentration in many structures of the limbic circuitry, however the role of zinc as a neuromodulator in such synapses is stilt uncertain. In this work, we verified the effects of zinc chelation in an animal model of epileptogenesis induced by amygdala rapid kindling. The basolateral. amygdala was electrically stimulated ten times per day for 2 days. A single stimulus was applied on the third day. Stimulated animals received injections of PBS or the zinc chelator diethildythiocarbamate acid (DEDTC) before each stimulus series. Animals were monitored with video-EEG and were perfused 3 h after the last stimulus for subsequent neo-Timm and Ftuoro-Jade B analysis. Zinc chelation decreased the duration of both behavioral seizures and electrical after-discharges, and also decreased the EEG spikes frequency, without changing the progression of behavioral seizure severity. These results indicate that the zinc ion may have a facilitatory role during kindling progression. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Recent studies have suggested that impaired nitric oxide (NO) formation in preeclampsia may result from increased concentrations of an endogenous NO synthase inhibitor, the asymmetric dimethylarginine (ADMA). However, no previous study has examined whether a negative association exists between ADMA and nitrite concentrations in preeclampsia. Moreover, no previous study has compared ADMA and nitrite levels in black and white preeclamptic pregnant women. Methods: We measured plasma nitrite concentrations using an ozone-based chemiluminescence assay, and plasma ADMA levels using enzyme immunoassays in 94 pregnant (47 healthy pregnant: 16 blacks and 31 whites; and 47 preeclamptic: 14 blacks and 33 whites). Results: We found higher ADMA (2.199 +/- 0.016 mu mol/l vs. 2.112 +/- 0.012 mu mol/l; P < 0.0001) and lower plasma nitrite levels (102 +/- 7.1 nmol/l vs. 214.8 +/- 26.1 nmol/l; P<0.0001) in preeclamptic compared with healthy pregnant women. Black pregnant had higher ADMA levels than white pregnant women (P<0.05), both in preeclamptic (2.239 +/- 0.020 mu mol/l vs. 2.144 +/- 0.019 mu mol/l) and in healthy pregnant (2.172 +/- 0.025 mu mol/l vs. 2.077 +/- 0.018 mu mol/l). Conversely, we found no significant effects of ethnicity on the plasma nitrite levels, both in healthy pregnant and in preeclamptic women (P>0.05). We found a significant negative correlation (P<0.05) between these markers (r = 0.28; P<0.05). Conclusions: Our findings show higher ADMA and lower nitrite levels in preeclamptic compared with healthy pregnant, and the concentrations of these biomarkers are inversely associated. While ethnicity affected ADMA concentrations, no such effect was found with respect to nitrite levels. These results may have important implications for studies on NO biology and therapeutic approaches of preeclampsia. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Objectives: We compared nitrite, B-type natriuretic peptide (BNP), and cGMP levels in preeclamptic with those found in healthy pregnant. Methods: We studied 21 healthy pregnant and 27 preeclamptic. Plasma cGMP and BNP levels were determined by ELISA. Nitrite levels were determined by chemiluminescence. Results: Higher cGMP and BNP, and lower nitrite levels were found in preeclamptic versus healthy pregnant Conclusions: Altered cGMP levels reflect increased BNP levels and not impaired nitric oxide activity in preeclampsia. (C) 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
Contrasting with increased nitric oxide (NO) formation during healthy pregnancy, reduced NO bioavailability plays a role in preeclampsia. However, no study has examined whether increased NO consumption by enhanced circulating levels of cell-free hemoglobin plays a role in preeclampsia. We studied 82 pregnant women (38 healthy pregnant and 44 with preeclampsia). To assess NO bioavailability, we measured plasma and whole blood nitrite concentrations using an ozone-based chemiluminescence assay. Plasma ceruloplasmin concentrations and plasma NO consumption (pNOc) were assessed and plasma hemoglobin (pHb) concentrations were measured with a commercial immunoassay. We found lower whole blood and plasma nitrite concentrations in preeclamptic patients (-48 and -39%, respectively; both P<0.05) compared with healthy pregnant women. Plasma samples from preeclamptic women consumed 63% more NO (P=0.003) and had 53% higher pHb and 10% higher ceruloplasmin levels than those found in healthy pregnant women (P<0.01). We found significant positive correlations between pHb and pNOc (r=0.61; P<0.0001), negative correlations between pNOc and whole blood or plasma nitrite concentrations (P=0.02; r=-0.32 and P=0.01: r=-0.34, respectively), and negative correlations between pHb and whole blood or plasma nitrite concentrations (P=0.03; r=-0.36 and P=0.01: r=-0.38, respectively). These findings suggest that increased pHb levels lead to increased NO consumption and lower NO bioavailability in preeclamptic compared with healthy pregnant women. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Pre-eclampsia (PE) is associated with decreased nitric oxide (NO) formation. However, no previous study has examined whether genetic variations in the endothelial NO synthase (eNOS) affect this alteration. We hypothesized that PE decreases NO formation depending on eNOS polymorphisms. We examined how three eNOS polymorphisms [T-786C, rs2070744; Glu298Asp, rs1799983; 27 bp variable number of tandem repeats (VNTR) in intron 4] affect plasma nitrite concentrations in 205 pregnant women [107 healthy pregnant (HP) and 98 PE]. Genotypes were determined and eNOS haplotypes were inferred using the PHASE 2.1 program. The plasma nitrite concentrations were determined using an ozone-based chemiluminescence assay. The Glu298Asp polymorphism had no effects on the plasma nitrite concentrations. Higher nitrite levels were found in HP women with the CC versus TT genotype for the T-786C polymorphism (277.9 +/- 19.5 versus 140.6 +/- 8.2 nM; P < 0.05). Lower nitrite levels were found in healthy women with the 4a4a versus 4b4b genotype for the VNTR polymorphism (95.1 +/- 3.3 versus 216.1 +/- 16.8 nM; P < 0.05). No effects of genotypes were found in PE women (all P > 0.05). The `C Glu b` haplotype was more frequent in the HP group than in the PE group (20 versus 5; P = 0.0044). This haplotype was associated with higher nitrite concentrations than the other haplotypes in healthy pregnancies (P < 0.05). No differences in nitrite concentrations were found among PE women with different eNOS haplotypes (P > 0.05). These findings indicate that eNOS polymorphisms affect endogenous NO formation in normal pregnancy, but not in PE, and that the `C Glu b` haplotype may protect against the development of PE by increasing endogenous NO formation.
Resumo:
Introduction: Zinc is an essential element for human homeostasis being clearly related to almost all metabolic pathways. It is found in some neural circuitries, probably acting as a modulator of glutamatergic excitatory synapsis. In the auditory system its presence has been demonstrated within the cochlea and cochlear nuclei. Tinnitus symptoms are correlated to zinc physiology, and it has been postulated that the oligoelement could be used as an alternative treatment for this clinical situation. Aim: This study has evaluated the brainstem responses (ABR) in patients who suffer from chronic idiophatic tinnitus, before and after being treated with zinc. Neural transmissions in the brainstem auditory structures were also compared in both conditions. Materials and Methods: Forty-one patients (22 with tinnitus and 19 controls, groups I and II, respectively) were included in the study and submitted to anamnesis, otorhinolaryngologic examinations, biochemical evaluation and audiological tests. Group I patients received an specific zinc formulation for 90 days. ABR tests were performed at the beginning of the study and at the end of the zinc treatment. Results: First ABR tests showed no differences between the groups, but on the second evaluation there was a significant prolongation of the wave V latency and an enlargement of wave V amplitude shown in group I. Conclusion: Treatment with systemic zinc could change some aspects of auditory neurotransmission in the brainstem.
Resumo:
Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3`5`-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.
Resumo:
Background: Angiogenesis has been shown as an important process in hematological malignancies. It consists in endothelial proliferation, migration, and tube formation following pro-angiogenic factors releasing, specially the vascular endothelial growth factor (VEGF), which angiogenic effect seems to be dependent on nitric oxide (NO). We examined the association among functional polymorphism in these two angiogenesis related genes: VEGF (-2578C>A, -1154G>A, and -634G>C) and NOS3 (-786T>C, intron 4 b>a, and Glu298Asp) with prognosis of childhood acute lymphoblastic leukemia (ALL). Methods: The genotypes were determined and haplotypes estimated in 105 ALL patients that were divided in 2 groups: high risk (HR) and low risk of relapse (LR) patients. In addition, event-free survival curves according to genotypes were assessed. Results: The group HR compared to the LR showed a higher frequency of the alleles -2578C and -634C and the haplotype CGC for VEGF (0.72 vs. 0.51, p<0.008; 0.47 vs. 0.26, p<0.008; and 42.1 vs. 14.5, p<0.006; respectively) and a lower frequency of the haplotype CbGlu (0.4 vs. 8.8, p<0.006), for NOS3. Conclusion: Polymorphisms of VEGF and NOS3 genes are associated with high risk of relapse, therefore may have a prognostic impact in childhood ALL. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Systemic or intra-striatal acute administration of nitric oxide synthase (NOS) inhibitors causes catalepsy in rodents. This effect disappears after sub-chronic treatment. The aim of the present study was to investigate if this tolerance is related to changes in the expression of NOS or dopamine-2 (D(2)) receptor or to a recovery of NOS activity. Male albino Swiss mice (25-30 g) received single or sub-chronic (once a day for 4 days) i.p. injections of saline or L-nitro-arginine (L-NOARG, 40 mg/kg), a non-selective inhibitor of neuronal nitric oxide synthase (nNOS). Twenty-four hours after the last injection, the animals were killed and their brains were removed for immunohistochemistry assay to detect the presence of nNOS or for `in-situ` hybridisation study using (35)S-labeled oligonucleotide probe complementary to D(2) receptor mRNA. The results were analysed by computerised densitometry. Independent groups of animals received the same treatment, but were submitted to the catalepsy test and had their brain removed to measure nitrite and nitrate (NOx) concentrations in the striatum. Acute administration of L-NOARG caused catalepsy that disappeared after sub-chronic treatment. The levels of NOx were significantly reduced after acute L-NOARG treatment. The decrease in NOx after drug injection suffered a partial tolerance after sub-chronic treatment. The catalepsy time after acute or sub-chronic treatment with L-NOARG was negatively (r = -0.717) correlated with NOx levels. Animals that received repeated L-NOARG injections also showed an increase in the number of nNOS-positive neurons in the striatum. No change in D(2) receptor mRNA expression was found in the dorsal striatum, nucleus accumbens and substantia nigra. Together, these results suggest that tolerance to L-NOARG cataleptic effects do not depend on changes in D(2) receptors. They may depend, however, on plastic changes in nNOS neurons resulting in partial recovery of NO formation in the striatum.
Resumo:
Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.