998 resultados para modulação de pulsos em RMN
Resumo:
Neuroscience is on a rise of discoveries. Its wide interdisciplinary approach facilitates a more complex understanding of the brain, covering various areas in depth. However, many phenomena that fascinate human kind are far from being fully elucidated, such as the formation of memories and sleep. In this study we investigated the role of the dopaminergic system in the process of memory consolidation and modulation of the phases of sleep-wake cycle. We used two groups of animals: wildtype mice and hiperdopaminergic mice, heterozygous for the gene encoding the dopamine transporter protein. We observed in wild-type mice that the partial blockade of the D2 dopamine receptor by the drug haloperidol caused deficits in memory consolidation for object recognition, as well as a significant reduction in the duration of rapid eye movement sleep (REM). We also found a mnemonic deficit without pharmacological intervention in hiperdopaminergic animals; this deficit was reversed with haloperidol. The results suggest that dopamine plays a key role in memory consolidation for object recognition. The data also support a functional relationship between the dopaminergic system and the modulation of REM sleep
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
T. gondii is an obligate intracellular protozoan and the main cause of retinochoroiditis in humans. The aim of this study was to evaluate the effect of the antipsychotic drugs haloperidol and clozapine on the course of infection by T. gondii of cultured embryonic retinal cells. Embryo retinas of Gallus gallus domesticus (E12) were used for the preparation of mixed monolayer cultures of retinal cells. Cultures were maintained on plates of 96 and 24 wells by 37°C in DMEM medium supplemented with 5% fetal bovine serum for 2 days. After this period, cultures were simultaneously infected with tachyzoites of T. gondii and treated with the antipsychotics haloperidol and clozapine for 48 hours. Treatment effects were determined by both assessing cell viability with the MTT method and evaluating infection outcomes in slides stained with Giemsa. The treatment with haloperidol and clozapine cells infected with T. gondii resulted in higher viability of these cells, suggesting a possible prevention of neuronal degeneration induced by T. gondii. Additionally, intracellular replication of this protozoan in cells treated with haloperidol and clozapine were significantly reduced, possibly by modulation of the parasite s intracellular calcium concentration
Resumo:
GABAergic neurotransmission has been implicated in many aspects of learning and memory, as well as mood and anxiety disorders. The amygdala has been one of the major focuses in this area, given its essential role in modulating emotionally relevant memories. However, studies with male subjects are still predominant in the field. Here we investigated the consequences for an aversive memory of enhancing or decreasing GABAergic transmission in the basolateral nucleus of the amygdala (BLA). Wistar female rats were trained in the plus-maze discriminative avoidance task, in which they had to learn to avoid one of the enclosed arms where an aversive stimulus consisting of a bright light and a loud noise was given (day 1). Fifteen minutes before the test session (day 2) animals received 0,2 μL infusions of either saline solution, the GABAergic agonist muscimol (0,05 mg/ml), or the GABAergic antagonist bicuculine (0,025 mg/ml) bilaterally intra-BLA. On the test day, females in proestrous or estrous presented adequate retrieval and did not extinguish the task, while females in metestrous or diestrous presented impaired retrieval. In the first group, muscimol infusion impaired retrieval and bicuculline had no effect, suggesting naturally low levels of GABAergic transmission in the BLA of proestrous and estrous females. In the second group, muscimol infusion had no effect and bicuculline reversed retrieval impairment, suggesting naturally high levels of GABAergic transmission in the BLA of metestrous and diestous females. Additionally, proestrous and estrous females presented higher anxiety levels compared to metestrous and diestrous females, which could explain better performance of this group. On the other hand, BLA GABAergic system did not interfere with the innate fear response because drug infusions had no effect in anxiety. Thus, retrieval alterations caused by the GABAergic drugs were probably related specifically to memory processes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction
Resumo:
The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory
Resumo:
Several studies have shown that there is a circadian modulation of explicit memory. This modulation can occur independently in each one of the mnemonic processes. The aim of this study was to evaluate the influence of time of training on short-term memory (STM) and long-term memory (LTM), using a recognition task. Moreover, a possible circadian modulation in retrieving was investigated when this process matched the acquisition hour (time stamp). The chronotype variable was also considered. Fifty-seven undergraduate students aging between 18 and 25 years (21,72 ± 2,14; 28 ♂) participated in this study. In the training phase (acquisition) the subjects heard a ten word list. Following this, they answered a recognition test to evaluate STM and one week later they answered a recognition test to evaluate LTM. In each chronotype, the subjects were divided in groups according to the training hour, part of them in the morning and the other in the afternoon. One week later some of the subjects in each group underwent LTM testing in the morning and others in the afternoon. When the subjects performances were analyzed together, independently of the chronotypes, a training hour effect was found in the LTM. The subjects trained in the afternoon had better performance. No time of day effect was found in the STM and in retrieving from the LTM. However, the morning types who were trained and tested in the same hour had a better performance in the LTM when compared to morning types trained and tested in different hours. This effect did not occur when the other chronotypes were analyzed. The circadian modulation seems to occur at least in two different ways. First, there is a circadian modulation in the acquisition/consolidation processes, with a better performance occuring in the afternoon. Secondly, there is a modulation in the retrieval mnemonic process, called time stamp phenomenon. This phenomenon, that occurred in the morning types, is showed for the first time in humans
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel
Resumo:
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Resumo:
The hydrolysis reaction in alkaline conditions of the commercial polymer poly(acrylamide-co-metacrylate of 3,5,5-trimethyl-hexane) called HAPAM, containing 0.75 % of hydrophobic groups, was carried out in 0.1 M NaCl and 0.25M NaOH solutions, varying the temperature and reaction time. The polymers were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), Elemental Analysis and Size Exclusion Chromatography (SEC). The values of the hydrolysis degree were obtained by 13C NMR. The viscosity of HAPAM and HAPAM-10N-R solutions was evaluated as a function of shear rate, ionic strength and temperature. At high polymer concentration (Cp), the viscosity of HAPAM solutions increased with the ionic strength and decreased with the temperature. The viscosity of HAPAM-10N-R solutions increased significantly in distilled water, due to repulsions between the carboxylate groups. At high Cp, with the increase of ionic strength and temperature, occurred a decrease of viscosity, due to mainly the high hydrolysis degree and the low amount of hydrophobic groups. These results indicated that the studied polymers have properties more suitable for the application in Enhanced Oil Recovery (EOR) in low salinity and moderate temperature reservoirs
Resumo:
Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes
Resumo:
In this present work an ethnographic research was performed with 84 native medicinal specimens from the Litoral Norte Riograndense, from which two plants Cleome spinosa Jacq e Pavonia varians Moric were submitted to ethnobotanic, phytochemistry and pharmacologic investigations. Additionally, a phytopharmacological research of the medicinal specimen Croton cajucara Benth ( native plant of the Amazon region of Brazil) was improved. The obtained phytochemical results of the C. spinosa and P. varians showed the presence of flavonoids constituents, among other components. The two flavonoids (2S)-5-hydroxy-7,4 -dimethoxy-flavanone and 5,4 -dihydroxy-3,7,3 -trimethoxy-flavone were isolated from C. spinosa. The antioxidant activity of the hydroalcoholic extracts of C. spinosa and P. varians solubilized in the microemulsion systems SME-1 and SME-4, was evaluated in the DPPHmethod. The used SME systems [obtained with Tween 80: Span 20 (3:1) and isopropyl myristate (IPM)] improved the dissolution of those tested polar extracts, with higher efficacy to the SME-1 system (in which ethanol was included as cosurfactant). The CE50 values evidenced for P. varians were 114 [g/mL (SME-1) and 246 [g/mL (SME-4); for C. spinosa it was 224 [g/mL (SME-1) and 248 [g/mL (SME-4), being the system SME-1 more effective for both tested extracts. The hydroalcoholic extracts of P. varians (HAE-PV) was also submitted to pharmacological screening for antinociceptive activity in animal models. The oral administration of this extract (100, 300 and 1000 mg/kg) inhibited the acetic acid-induced writhing in mice. The higher inhibition (74%) was evidenced to the 1000 mg/kg administered dose. Its effect on the central nervous system (CNS) was investigated by tail flick and formalin-method and reveled that it has negligible antinociceptive action on the CNS. After taking consideration of HAE-PV interaction, Pavonia varians Moric could be used as a potent analgesic agent in case of peripheral algesia, without affecting the CNS. The phytochemical study of the stem bark of Croton cajucara Benth lead to the isolation of 19-nor-clerodanetype diterpenes, as well as to the separation of its fixed oil FO-CC. This non polar oil material reveled to be rich in sesquiterpenes and 19-nor-clerodanes components. The biologic effect of OF-CC was evaluated in the development in vitro of the fungis phytopatogens such as Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii. Significant inhibitory effect of the tested fungis (at 0,2 mg.mL-1 dosage) were comproved. A Mass Spectrometry study of clerodane-type diterpenes was developed in order to identify characteristic fragments on mass spectrometra of both clerodane and 19-nor-clerodane presenting an α,β-insaturated carbonyl moiety at ring A of the decalin-system. For that study, mass spectroscopy data were analysed for 19-nor-clerodanes [trans-dehydrocrotonin (DCTN), trans-crotonin (CTN), cis-cajucarin B (c-CJC-B), and cajucarinolide (CJCR)] and for clerodanes [isosacacarin (ISCR) and transcajucarin A (t-CJC-A)] obtained from the stem bark of C. cajucara, and also clerodane-type from other species. The trans-junction of the enone-system clerodanes was clear correlated with the presence of the characteristic ions at m/z 95, 121 e 205. Meanwhile, the characteristics ions at m/z 122 e 124 were correlated to cis-junction. The trans-junction of the enone-system 19-nor-clerodanes showed characteristics ions at m/z 161, 134 e 121. This study could be successful employed for identification of clerodane constituents from other specimens without any additional spectroscopic analyses, as well as a previously phytochemical analyzes in clerodane project search
Resumo:
The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation