963 resultados para mammalian cell culture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary isoflavones are currently receiving much attention because of their potential role in preventing coronary artery disease and other chronic diseases. Accumulating evidence from cell culture and laboratory animal experiments indicates that isoflavones have the potential to prevent or delay atherogenesis. Suggested mechanisms of action include: a reduction in low-density lipoprotein (LDL) cholesterol and a potential reduction in the susceptibility of the LDL particle to oxidation; (2) an improvement in vascular reactivity; (3) an inhibition of pro-inflammatory cytokines, cell adhesion proteins and nitric oxide (NO) production; and (4) an inhibition of platelet aggregation. These mechanisms are consistent with the epidemiological evidence that a high consumption of isoflavone-rich soy products is associated with a reduced incidence of coronary artery disease. Biological effects of isoflavones are dependent on many factors, including dose consumed, duration of use, protein-binding affinity, and an individual's metabolism or intrinsic oestrogenic state. Further clinical studies are necessary to determine the potential health effects of isoflavones in specific population groups as we currently know little about age-related differences in exposure to these compounds and there are few guidelines on optimal dose for cardiovascular health benefits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for ‘on-demand’ use. Materials & methods: In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Results: Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Conclusion: Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polymerase chain reaction (PCR) assay was developed to detect Chlamydia psittaci DNA in faeces and tissue samples from avian species. Primers were designed to amplify a 264 bp product derived from part of the 5' non-translated region and part of the coding region of the ompA gene which encodes the major outer membrane protein. Amplified sequences were confirmed by Southern hybridization using an internal probe. The sensitivity of the combined assay was found to be between 60 to 600 fg of chlamydial DNA (approximately 6 to 60 genome copies). The specificity of the assay was confirmed since PCR product was not obtained from samples containing several serotypes of C. trachomatis, strains of C. pneumoniae, the type strain of C. pecorum, nor from samples containing microorganisms commonly found in the avian gut flora. In this study, 404 avian faeces and 141 avian tissue samples received by the Central Veterinary Laboratory over a 6 month period were analysed by PCR, antigen detection ELISA and where possible, cell culture isolation. PCR performed favourably compared with ELISA and cell culture, or with ELISA alone. The PCR assay was especially suited to the detection of C. psittaci DNA in avian faeces samples. The test was also useful when applied to tissue samples from small contact birds associated with a case of human psittacosis where ELISA results were negative and chlamydial isolation was a less favourable method due to the need for rapid diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative RT-PCR confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher relative fitness compared to wild-type virus, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during positive-stranded RNA virus infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The composition of polyphenols in ileal fluid samples obtained from an ileostomy subject after lingonberry intake was compared with lingonberry extracts obtained after simulated in vitro digestion (IVDL) and subsequent faecal fermentation (IVFL). HPLC-PDA-MS/MS analysis confirmed similar patterns of lingonberry (poly)phenolic metabolism after the in vivo and in vitro digestion, with reduced recovery of anthocyanins and a similar pattern of recovery for proanthocyanidins observed for both methods of digestion. On the other hand, the IVFL sample contained none of the original (poly)phenolic components but was enriched in simple aromatic components. Digested and fermented extracts exhibited significant (P < 0.05) anti-genotoxic (Comet assay), anti-mutagenic (Mutation Frequency assay), and anti-invasive (Matrigel Invasion assay) effects in human cell culture models of colorectal cancer at physiologically-relevant doses (0-50 μg/mL gallic acid equivalents). The ileal fluid induced significant anti-genotoxic activity (P < 0.05), but at a higher concentration (200 μg/mL gallic acid equivalents) than the IVDL. Despite extensive structural modification following digestion and fermentation, lingonberry extracts retained their bioactivity in vitro. This reinforces the need for studies to consider the impact of digestion when investigating bioactivity of dietary phytochemicals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study has been to characterize adult human somatic periodontium-derived stem cells (PDSCS) isolated from human periodontium and to follow their differentiation after cell culture. PDSCS were isolated from human periodontal tissue and cultured as spheres in serum-free medium. After 10 days the primary spheres were dissociated and the secondary spheres sub-cultured for another 1-2 weeks. Cells from different time points were analyzed, and immunohistochemical and electron microscopic investigations carried out. Histological analysis showed differentiation of spheres deriving from the PDSCS with central production of extracellular matrix beginning 3 days after sub-culturing. Isolated PDSCS developed pseudopodia which contained actin. Tubulin was found in the central portion of the cells. Pseudopodia between different cells anastomosed, indicating intercellular transport. Immunostaining for osteopontin demonstrated a positive reaction in primary spheres and within extracellular matrix vesicles after sub-culturing. In cell culture under serum-free conditions human PDSCS form spheres which are capable of producing extracellular matrix. Further investigations have do be carried out to investigate the capability of these cells to differentiate into osteogenic progenitor cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Horticultural science linked with basic studies in biology, chemistry, physics and engineering has laid the foundation for advances in applied knowledge which are at the heart of commercial, environmental and social horticulture. In few disciplines is science more rapidly translated into applicable technologies than in the huge range of man’s activities embraced within horticulture which are discussed in this Trilogy. This chapter surveys the origins of horticultural science developing as an integral part of the 16th century “Scientific Revolution”. It identifies early discoveries during the latter part of the 19th and early 20th centuries which rationalized the control of plant growth, flowering and fruiting and the media in which crops could be cultivated. The products of these discoveries formed the basis on which huge current industries of worldwide significance are founded in fruit, vegetable and ornamental production. More recent examples of the application of horticultural science are used in an explanation of how the integration of plant breeding, crop selection and astute marketing highlighted by the New Zealand industry have retained and expanded the viability of production which supplies huge volumes of fruit into the world’s markets. This is followed by an examination of science applied to tissue and cell culture as an example of technologies which have already produced massive industrial applications but hold the prospect for generating even greater advances in the future. Finally, examples are given of nascent scientific discoveries which hold the prospect for generating horticultural industries with considerable future impact. These include systems modeling and biology, nanotechnology, robotics, automation and electronics, genetics and plant breeding, and more efficient and effective use of resources and the employment of benign microbes. In conclusion there is an estimation of the value of horticultural science to society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: This study aimed to compare the cytotoxicity of base-metal dental alloys and to evaluate if the casting method could influence their cytotoxicity. Methods: Disks of base-metal dental alloys were cast by two methods: plasma, under argon atmosphere, injected by vacuum-pressure; and oxygen-gas flame, injected by centrifugation, except Ti-6Al-4V and commercially pure titanium (cpTi), cast only by plasma. SCC9 cells were cultured in culture media D-MEM/Ham`s F12 supplemented, at 37 degrees C in a humidified atmosphere of 5% carbon dioxide and 95% air, on the previously prepared disks. At subconfluence in wells without disks (control), cell number and viability were evaluated. Results: In plasma method, cpTi and Ti-6Al-4V were similar to control and presented higher number of cells than all other alloys, followed by Ni-Cr. In oxygen-gas name method, all alloys presented fewer cells than control. Ni-Cr presented more cells than any other alloy, followed by Co-Cr-Mo-W which presented more cells than Ni-Cr-Ti, Co-Cr-Mo, and Ni-Cr-Be. There were no significant differences between casting methods related to cell number. Cell viability was not affected by either chemical composition or casting methods. Conclusion: cpTi and Ti-6Al-4V were not cytotoxic while Ni-Cr-Be was the most cytotoxic among tested alloys. The casting method did not affect cytotoxicity of the alloys. (c) 2007 Wiley Periodicals, Inc.