693 resultados para learning environments
Resumo:
Person-to-stock order picking is highly flexible and requires minimal investment costs in comparison to automated picking solutions. For these reasons, tradi-tional picking is widespread in distribution and production logistics. Due to its typically large proportion of manual activities, picking causes the highest operative personnel costs of all intralogistics process. The required personnel capacity in picking varies short- and mid-term due to capacity requirement fluctuations. These dynamics are often balanced by employing minimal permanent staff and using seasonal help when needed. The resulting high personnel fluctuation necessitates the frequent training of new pickers, which, in combination with in-creasingly complex work contents, highlights the im-portance of learning processes in picking. In industrial settings, learning is often quantified based on diminishing processing time and cost requirements with increasing experience. The best-known industrial learning curve models include those from Wright, de Jong, Baloff and Crossman, which are typically applied to the learning effects of an entire work crew rather than of individuals. These models have been validated in largely static work environments with homogeneous work contents. Little is known of learning effects in picking systems. Here, work contents are heterogeneous and individual work strategies vary among employees. A mix of temporary and steady employees with varying degrees of experience necessitates the observation of individual learning curves. In this paper, the individual picking performance development of temporary employees is analyzed and compared to that of steady employees in the same working environment.
Resumo:
Despite that a wealth of evidence links striatal dopamine to individualś reward learning performance in non-social environments, the neurochemical underpinnings of such learning during social interaction are unknown. Here, we show that the administration of 300 mg of the dopamine precursor L-DOPA to 200 healthy male subjects influences learning about a partners' prosocial preferences in a novel social interaction task, which is akin to a repeated trust game. We found learning to be modulated by a well-established genetic marker of striatal dopamine levels, the 40-bp variable number tandem repeats polymorphism of the dopamine transporter (DAT1 polymorphism). In particular, we found that L-DOPA improves learning in 10/10R genoype subjects, who are assumed to have lower endogenous striatal dopamine levels and impairs learning in 9/10R genotype subjects, who are assumed to have higher endogenous dopamine levels. These findings provide first evidence for a critical role of dopamine in learning whether an interaction partner has a prosocial or a selfish personality. The applied pharmacogenetic approach may open doors to new ways of studying psychiatric disorders such as psychosis, which is characterized by distorted perceptions of others' prosocial attitudes.
Resumo:
Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
This document presents an innovative, formal educational initiative that is aimed at enhancing the development of engineering students' specific competences. The subject of project management is the common theoretical and practical framework that articulates an experience that is carried out by multidisciplinary groups. Full utilization of Web 2.0 platforms and Project Based Learning constitutes the applied methodology. More specifically, this study focuses on monitoring communication competence when working in virtual environments, providing an ad-hoc rubric as a final result.
Resumo:
Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,
Resumo:
El campo de estudio relacionado con los laboratorios remotos en el ámbito educativo de las ciencias y la ingeniería está sufriendo una notable expansión ante la necesidad de adaptar los procesos de aprendizaje en dichas áreas a las características y posibilidades de la formación online. Muchos de los recursos educativos basados en esta tecnología, existentes en la actualidad, presentan ciertas limitaciones que impiden alcanzar las competencias que se deben adquirir en los laboratorios de ingeniería. Estas limitaciones están relacionadas con diferentes aspectos de carácter técnico y formativo. A nivel técnico las limitaciones principales se centran en el grado de versatilidad que son capaces de proporcionar comparado con el que se dispone en un laboratorio tradicional y en el modo de interacción del usuario, que provoca que el estudiante no distinga claramente si está realizando acciones sobre sistemas reales o simulaciones. A nivel formativo las limitaciones detectadas son relevantes para poder alcanzar un aprendizaje significativo. En concreto están relacionadas principalmente con un escaso sentimiento de inmersión, una reducida sensación de realismo respecto a las operaciones que se realizan o la limitada posibilidad de realizar actividades de forma colaborativa. La aparición de nuevas tecnologías basadas en entornos inmersivos, unida a los avances producidos relacionados con el aumento de la capacidad gráfica de los ordenadores y del ancho de banda de acceso a Internet, han hecho factible que las limitaciones comentadas anteriormente puedan ser superadas gracias al desarrollo de nuevos recursos de aprendizaje surgidos de la fusión de laboratorios remotos y mundos virtuales 3D. Esta tesis doctoral aborda un trabajo de investigación centrado en proponer un modelo de plataformas experimentales, basado en la fusión de las dos tecnologías mencionadas, que permita generar recursos educativos online que faciliten la adquisición de competencias prácticas similares a las que se consiguen en un laboratorio tradicional vinculado a la enseñanza de la electrónica. El campo de aplicación en el que se ha focalizado el trabajo realizado se ha centrado en el área de la electrónica aunque los resultados de la investigación realizada se podrían adaptar fácilmente a otras disciplinas de la ingeniería. Fruto del trabajo realizado en esta tesis es el desarrollo de la plataforma eLab3D, basada en el modelo de plataformas experimentales propuesto, y la realización de dos estudios empíricos llevados a cabo con estudiantes de grado en ingeniería, muy demandados por la comunidad investigadora. Por un lado, la plataforma eLab3D, que permite llevar a cabo de forma remota actividades prácticas relacionadas con el diseño, montaje y prueba de circuitos electrónicos analógicos, aporta como novedad un dispositivo hardware basado en un sistema de conmutación distribuido. Dicho sistema proporciona un nivel de versatilidad muy elevado, a nivel de configuración de circuitos y selección de puntos de medida, que hace posible la realización de acciones similares a las que se llevan a cabo en los laboratorios presenciales. Por otra parte, los estudios empíricos realizados, que comparaban la eficacia educativa de una metodología de aprendizaje online, basada en el uso de la plataforma eLab3D, con la conseguida siguiendo una metodología clásica en los laboratorios tradicionales, mostraron que no se detectaron diferencias significativas en el grado de adquisición de los resultados de aprendizaje entre los estudiantes que utilizaron la plataforma eLab3D y los que asistieron a los laboratorios presenciales. Por último, hay que destacar dos aspectos relevantes relacionados directamente con esta tesis. En primer lugar, los resultados obtenidos en las experiencias educativas llevadas a cabo junto a valoraciones obtenidas por el profesorado que ha colaborado en las mismas han sido decisivos para que la plataforma eLab3D se haya integrado como recurso complementario de aprendizaje en titulaciones de grado de ingeniería de la Universidad Politécnica de Madrid. En segundo lugar, el modelo de plataformas experimentales que se ha propuesto en esta tesis, analizado por investigadores vinculados a proyectos en el ámbito de la fusión nuclear, ha sido tomado como referencia para generar nuevas herramientas de formación en dicho campo. ABSTRACT The field of study of remote laboratories in sciences and engineering educational disciplines is undergoing a remarkable expansion given the need to adapt the learning processes in the aforementioned areas to the characteristics and possibilities of online education. Several of the current educational resources based on this technology have certain limitations that prevent from reaching the required competencies in engineering laboratories. These limitations are related to different aspects of technical and educational nature. At the technical level, they are centered on the degree of versatility they are able to provide compared to a traditional laboratory and in the way the user interacts with them, which causes the student to not clearly distinguish if actions are being performed over real systems or over simulations. At the educational level, the detected limitations are relevant in order to reach a meaningful learning. In particular, they are mainly related to a scarce immersion feeling, a reduced realism sense regarding the operations performed or the limited possibility to carry out activities in a collaborative way. The appearance of new technologies based on immersive environments, together with the advances in graphical computer capabilities and Internet bandwidth access, have made the previous limitations feasible to be overcome thanks to the development of new learning resources that arise from merging remote laboratories and 3D virtual worlds. This PhD thesis tackles a research work focused on the proposal of an experimental platform model, based on the fusion of both mentioned technologies, which allows for generating online educational resources that facilitate the acquisition of practical competencies similar to those obtained in a traditional electronics laboratory. The application field, in which this work is focused, is electronics, although the research results could be easily adapted to other engineering disciplines. A result of this work is the development of eLab3D platform, based on the experimental platform model proposed, and the realization of two empirical studies with undergraduate students, highly demanded by research community. On one side, eLab3D platform, which allows to accomplish remote practical activities related to the design, assembling and test of analog electronic circuits, provides, as an original contribution, a hardware device based on a distributed switching system. This system offers a high level of versatility, both at the circuit configuration level and at the selection of measurement points, which allows for doing similar actions to those conducted in hands-on laboratories. On the other side, the empirical studies carried out, which compare the educational efficiency of an online learning methodology based on the use of eLab3D platform with that obtained following a classical methodology in traditional laboratories, shows that no significant differences in the acquired degree of learning outcomes among the students that used eLab3D platform and those that attended hands-on laboratories were detected. Finally, it is important to highlight two relevant aspects directly related with this thesis work. First of all, the results obtained in the educational experiences conducted, along with the assessment from the faculty that has collaborated in them, have been decisive to integrate eLab3D platform as a supplementary learning resource in engineering degrees at Universidad Politecnica de Madrid. Secondly, the experimental platform model originally proposed in this thesis, which has been analysed by nuclear fusion researchers, has been taken as a reference to generate new educational tools in that field.
Resumo:
Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.
Resumo:
El auge y penetración de las nuevas tecnologías junto con la llamada Web Social están cambiando la forma en la que accedemos a la medicina. Cada vez más pacientes y profesionales de la medicina están creando y consumiendo recursos digitales de contenido clínico a través de Internet, surgiendo el problema de cómo asegurar la fiabilidad de estos recursos. Además, un nuevo concepto está apareciendo, el de pervasive healthcare o sanidad ubicua, motivado por pacientes que demandan un acceso a los servicios sanitarios en todo momento y en todo lugar. Este nuevo escenario lleva aparejado un problema de confianza en los proveedores de servicios sanitarios. Las plataformas de eLearning se están erigiendo como paradigma de esta nueva Medicina 2.0 ya que proveen un servicio abierto a la vez que controlado/supervisado a recursos digitales, y facilitan las interacciones y consultas entre usuarios, suponiendo una buena aproximación para esta sanidad ubicua. En estos entornos los problemas de fiabilidad y confianza pueden ser solventados mediante la implementación de mecanismos de recomendación de recursos y personas de manera confiable. Tradicionalmente las plataformas de eLearning ya cuentan con mecanismos de recomendación, si bien están más enfocados a la recomendación de recursos. Para la recomendación de usuarios es necesario acudir a mecanismos más elaborados como son los sistemas de confianza y reputación (trust and reputation) En ambos casos, tanto la recomendación de recursos como el cálculo de la reputación de los usuarios se realiza teniendo en cuenta criterios principalmente subjetivos como son las opiniones de los usuarios. En esta tesis doctoral proponemos un nuevo modelo de confianza y reputación que combina evaluaciones automáticas de los recursos digitales en una plataforma de eLearning, con las opiniones vertidas por los usuarios como resultado de las interacciones con otros usuarios o después de consumir un recurso. El enfoque seguido presenta la novedad de la combinación de una parte objetiva con otra subjetiva, persiguiendo mitigar el efecto de posibles castigos subjetivos por parte de usuarios malintencionados, a la vez que enriquecer las evaluaciones objetivas con información adicional acerca de la capacidad pedagógica del recurso o de la persona. El resultado son recomendaciones siempre adaptadas a los requisitos de los usuarios, y de la máxima calidad tanto técnica como educativa. Esta nueva aproximación requiere una nueva herramienta para su validación in-silico, al no existir ninguna aplicación que permita la simulación de plataformas de eLearning con mecanismos de recomendación de recursos y personas, donde además los recursos sean evaluados objetivamente. Este trabajo de investigación propone pues una nueva herramienta, basada en el paradigma de programación orientada a agentes inteligentes para el modelado de comportamientos complejos de usuarios en plataformas de eLearning. Además, la herramienta permite también la simulación del funcionamiento de este tipo de entornos dedicados al intercambio de conocimiento. La evaluación del trabajo propuesto en este documento de tesis se ha realizado de manera iterativa a lo largo de diferentes escenarios en los que se ha situado al sistema frente a una amplia gama de comportamientos de usuarios. Se ha comparado el rendimiento del modelo de confianza y reputación propuesto frente a dos modos de recomendación tradicionales: a) utilizando sólo las opiniones subjetivas de los usuarios para el cálculo de la reputación y por extensión la recomendación; y b) teniendo en cuenta sólo la calidad objetiva del recurso sin hacer ningún cálculo de reputación. Los resultados obtenidos nos permiten afirmar que el modelo desarrollado mejora la recomendación ofrecida por las aproximaciones tradicionales, mostrando una mayor flexibilidad y capacidad de adaptación a diferentes situaciones. Además, el modelo propuesto es capaz de asegurar la recomendación de nuevos usuarios entrando al sistema frente a la nula recomendación para estos usuarios presentada por el modo de recomendación predominante en otras plataformas que basan la recomendación sólo en las opiniones de otros usuarios. Por último, el paradigma de agentes inteligentes ha probado su valía a la hora de modelar plataformas virtuales complejas orientadas al intercambio de conocimiento, especialmente a la hora de modelar y simular el comportamiento de los usuarios de estos entornos. La herramienta de simulación desarrollada ha permitido la evaluación del modelo de confianza y reputación propuesto en esta tesis en una amplia gama de situaciones diferentes. ABSTRACT Internet is changing everything, and this revolution is especially present in traditionally offline spaces such as medicine. In recent years health consumers and health service providers are actively creating and consuming Web contents stimulated by the emergence of the Social Web. Reliability stands out as the main concern when accessing the overwhelming amount of information available online. Along with this new way of accessing the medicine, new concepts like ubiquitous or pervasive healthcare are appearing. Trustworthiness assessment is gaining relevance: open health provisioning systems require mechanisms that help evaluating individuals’ reputation in pursuit of introducing safety to these open and dynamic environments. Technical Enhanced Learning (TEL) -commonly known as eLearning- platforms arise as a paradigm of this Medicine 2.0. They provide an open while controlled/supervised access to resources generated and shared by users, enhancing what it is being called informal learning. TEL systems also facilitate direct interactions amongst users for consultation, resulting in a good approach to ubiquitous healthcare. The aforementioned reliability and trustworthiness problems can be faced by the implementation of mechanisms for the trusted recommendation of both resources and healthcare services providers. Traditionally, eLearning platforms already integrate recommendation mechanisms, although this recommendations are basically focused on providing an ordered classifications of resources. For users’ recommendation, the implementation of trust and reputation systems appears as the best solution. Nevertheless, both approaches base the recommendation on the information from the subjective opinions of other users of the platform regarding the resources or the users. In this PhD work a novel approach is presented for the recommendation of both resources and users within open environments focused on knowledge exchange, as it is the case of TEL systems for ubiquitous healthcare. The proposed solution adds the objective evaluation of the resources to the traditional subjective personal opinions to estimate the reputation of the resources and of the users of the system. This combined measure, along with the reliability of that calculation, is used to provide trusted recommendations. The integration of opinions and evaluations, subjective and objective, allows the model to defend itself against misbehaviours. Furthermore, it also allows ‘colouring’ cold evaluation values by providing additional quality information such as the educational capacities of a digital resource in an eLearning system. As a result, the recommendations are always adapted to user requirements, and of the maximum technical and educational quality. To our knowledge, the combination of objective assessments and subjective opinions to provide recommendation has not been considered before in the literature. Therefore, for the evaluation of the trust and reputation model defined in this PhD thesis, a new simulation tool will be developed following the agent-oriented programming paradigm. The multi-agent approach allows an easy modelling of independent and proactive behaviours for the simulation of users of the system, conforming a faithful resemblance of real users of TEL platforms. For the evaluation of the proposed work, an iterative approach have been followed, testing the performance of the trust and reputation model while providing recommendation in a varied range of scenarios. A comparison with two traditional recommendation mechanisms was performed: a) using only users’ past opinions about a resource and/or other users; and b) not using any reputation assessment and providing the recommendation considering directly the objective quality of the resources. The results show that the developed model improves traditional approaches at providing recommendations in Technology Enhanced Learning (TEL) platforms, presenting a higher adaptability to different situations, whereas traditional approaches only have good results under favourable conditions. Furthermore the promotion period mechanism implemented successfully helps new users in the system to be recommended for direct interactions as well as the resources created by them. On the contrary OnlyOpinions fails completely and new users are never recommended, while traditional approaches only work partially. Finally, the agent-oriented programming (AOP) paradigm has proven its validity at modelling users’ behaviours in TEL platforms. Intelligent software agents’ characteristics matched the main requirements of the simulation tool. The proactivity, sociability and adaptability of the developed agents allowed reproducing real users’ actions and attitudes through the diverse situations defined in the evaluation framework. The result were independent users, accessing to different resources and communicating amongst them to fulfil their needs, basing these interactions on the recommendations provided by the reputation engine.
Resumo:
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Resumo:
Los arquitectos y urbanistas tienen una larga tradición en el aprendizaje de las herramientas de las ciencias sociales, especialmente las que les permiten analizar y describir mejor los entornos y las personas para las que trabajan. Esto ha llevado a los arquitectos a desarrollar mejores herramientas de observación y descripción del ámbito social y no sólo el material. Sin embargo, la mayoría de las veces este acercamiento interdisciplinar ha identificado las ciencias sociales, especialmente la antropología, con la etnografía. Este artículo parte de la crítica a esta identificación hecha por el antropólogo Tim Ingold y se centra en lo que él propone como el método central de la antropología, la observación participante. Para después revisar varias propuestas actuales de científicos sociales que tratan de desarrollar una disciplina no representacional y orientada al futuro, un objetivo más cercano al de la arquitectura. El artículo intenta imaginar cómo esta práctica transdisciplinar podría desarrollarse.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The current trend among many universities is to increase the number of courses available online. However, there are fundamental problems in transferring traditional education courses to virtual formats. Delivering current curricula in an online format does not assist in overcoming the negative effects on student motivation which are inherent in providing information passively. Using problem-based learning (PBL) online is a method by which computers can become a tool to encourage active learning among students. The delivery of curricula via goal-based scenarios allows students to learn at different rates and can successfully shift online learning from memorization to discovery. This paper reports on a Web-based e-health course that has been delivered via PBL for the past 12 months. Thirty distance-learning students undertook postgraduate courses in e-health delivered via the Internet (asynchronous communication). Data collected via online student surveys indicated that the PBL format was both flexible and interesting. PBL has the potential to increase the quality of the educational experience of students in online environments.