983 resultados para laser-induced near-subwavelength ripples
Resumo:
Contraction of cardiac muscle is regulated through the Ca2+ dependent protein-protein interactions of the troponin complex (Tn). The critical role cardiac troponin C (cTnC) plays as the Ca2+ receptor in this complex makes it an attractive target for positive inotropic compounds. In this study, the ten Met methyl groups in cTnC, [98% 13C ϵ]-Met cTnC, are used as structural markers to monitor conformational changes in cTnC and identify sites of interaction between cTnC and cardiac troponin I (cTnI) responsible for the Ca2+ dependent interactions. In addition the structural consequences that a number of Ca2+-sensitizing compounds have on free cTnC and the cTnC·cTnI complex were characterized. Using heteronuclear NMR experiments and monitoring chemical shift changes in the ten Met methyl 1H-13C correlations in 3Ca2+ cTnC when bound to cTnI revealed an anti-parallel arrangement for the two proteins such that the N-domain of cTnI interacts with the C-domain of cTnC. The large chemical shifts in Mets-81, -120, and -157 identified points of contact between the proteins that include the C-domain hydrophobic surface in cTnC and the A, B, and D helical interface located in the regulatory N-domain of cTnC. TnI association [cTnI(33–80), cTnI(86–211), or cTnI(33–211)] was found also to dramatically reduce flexibility in the D/E central linker of cTnC as monitored by line broadening in the Met 1H- 13C correlations of cTnC induced by a nitroxide spin label, MTSSL, covalently attached to cTnC at Cys 84. TnI association resulted in an extended cTnC that is unlike the compact structure observed for free cTnC. The Met 1H-13C correlations also allowed the binding characteristics of bepridil, TFP, levosimendan, and EMD 57033 to the apo, 2Ca2+, and Ca2+ saturated forms of cTnC to be determined. In addition, the location of drug binding on the 3Ca2+cTnC·cTnI complex was identified for bepridil and TFP. Use of a novel spin-labeled phenothiazine, and detection of isotope filtered NOEs, allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain, and on two hydrophobic surfaces on N-regulatory domain in free 3Ca2+ cTnC. In contrast, only one N-domain drug binding site exists in 3Ca2+ cTnC·cTnI complex. The methyl groups of Met 45, 60 and 80, which are grouped in a hydrophobic patch near site II in cTnC, showed the greatest change upon titration with bepridil or TFP, suggesting that this is a critical site of drug binding in both free cTnC and when associated with cTnI. The strongest NOEs were seen for Met-60 and -80, which are located on helices C and D, respectively, of Ca2+ binding site II. These results support the conclusion that the small hydrophobic patch which includes Met-45, -60, and -80 constitutes a drug binding site, and that binding drugs to this site will lead to an increase in Ca2+ binding affinity of site II while preserving maximal cTnC activity. Thus, the subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds. ^
Resumo:
We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.
Resumo:
Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n/100 m**3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind/m**3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 m above and showed maximum abundance of 65,000 ind/m**3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind/m**3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho-pelagic coupling. Neglecting this community may cause severe underestimates of the stock of elagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.
Resumo:
The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of more than 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ca. 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations less than 1mol/kg, an elevated nitrogen-deficit of ca. 17µmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.
Resumo:
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Resumo:
The Mauritanian coastal area is one of the most biologically productive upwelling regions in the world ocean. Shipboard observations carried out during maximum upwelling season and short-term moored observations are used to investigate diapycnal mixing processes and to quantify diapycnal fluxes of nutrients. The observations indicate strong tide-topography interactions that are favored by near-critical angles occurring on large parts of the continental slope. Moored velocity observations reveal the existence of highly nonlinear internal waves and bores and levels of internal wave spectra are strongly elevated near the buoyancy frequency. Dissipation rates of turbulent kinetic energy at the slope and shelf determined from microstructure measurements in the upper 200 m averages to ? = 5 × 10-8 W kg-1. Particularly elevated dissipation rates were found at the continental slope close to the shelf break, being enhanced by a factor of 100 to 1000 compared to dissipation rates farther offshore. Vertically integrated dissipation rates per unit volume are strongest at the upper continental slope reaching values of up to 30 mW m-2. A comparison of fine-scale parameterizations of turbulent dissipation rates for shelf regions and the open ocean to the measured dissipation rates indicates deficiencies in reproducing the observations. Diapycnal nitrate fluxes above the continental slope at the base of the mixed layer yielding a mean value of 12 × 10-2 µmol m-2 s-1 are amongst the largest published to date. However, they seem to only represent a minor contribution (10% to 25%) to the net community production in the upwelling region.
Resumo:
Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin.
Resumo:
The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies and the evaluation of the corresponding induced properties as material specific volume reduction at the surface, microhardness and wear resistance. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.
Resumo:
A quasisteady model for the plasma ablated from a thick foil by a laser pulse, at low $lln $ and R /A i within a low, narrow range, is given (4, is absorbed intensity, /zL wavelength, R focalspot radius). An approximate analytical solution is given for the two-dimensional plasma dynamics. At large magnetic Reynolds number Rm, the morphology of the magnetic field shows features in agreement with recent results for high intensities. Current lines are open: electric current flows toward the spot near its axis, then turns and flows away. The efficiency of converting light energy into electric energy peaks at Rm- 1, both the validity of the model. and accuracy of the solution are discussed, The neighborhood of the spot boundary is analyzed in detail by extending classical Prandtl-Meyer results.
Resumo:
Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.
Resumo:
Cyclindrical structures of nematics give rise to several opto-optical effects related to molecular reorientation. One of these effects is the formation of diffraction ring patterns similar to the ones observed in planar cells, but differing in shape. Another effect has been observed, namely a quasi-chaotic motion of rings with a very large angular spread; this motion can be obtained using a cw laser and high power densities. The phenomenon could be attributed to thermal motion, however, there are some features that cannot be explained by a purely thermal effect, e.g., a wavelength dependence of the threshold and the frequencies of the ring motion.