953 resultados para insect cell expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Human immunodeficiency virus type 1 (HIV-1) has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24) and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER) on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant-produced protein has potential for use as a vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first study to describe the association between expression of MUC1 and MUC2 mucins and prognosis in ovarian cancer. Paraffin sections of epithelial ovarian tumours (n=182: 29 benign, 21 low malignant potential, and 132 invasive tumours) were analysed immunohistochemically for expression of MUC1 and MUC2 mucin core proteins. Most benign, low malignant potential, and invasive tumours showed high MUC1 expression in the cytoplasm. Low cytoplasmic expression of MUC1 was a predictor for good prognosis, particularly within stage III tumours. A minority of benign epithelial tumours, but most low malignant potential and invasive non-mucinous tumours, showed high MUC1 expression on the cell membrane. High apical MUC1 reactivity was associated with non-mucinous tumours. Low expression of MUC1 in the apical membrane was associated with early stage and good outcome for invasive tumours. Most benign and low malignant potential tumours, but only a minority of invasive tumours, showed MUC2 expression. MUC2 was found in non-mucinous as well as in mucinous tumours. The presence of MUC2 was inversely associated with high tumour grade but was not associated with altered survival. These results support experimental evidence that MUC1 influences the metastatic ability of ovarian cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Stromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process. METHODS: Microarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model. RESULTS: TGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1). CONCLUSIONS: In 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Broccoli consumption has been associated with a reduced risk of prostate cancer. Isothiocyanates (ITCs) derived from glucosinolates that accumulate in broccoli are dietary compounds that may mediate these health effects. Sulforaphane (SF, 4-methylsulphinylbutyl ITC) derives from heading broccoli (calabrese) and iberin (IB, 3-methylsulphinypropyl ITC) from sprouting broccoli. While there are many studies regarding the biological activity of SF, mainly undertaken with cancerous cells, there are few studies associated with IB. METHODS: Primary epithelial and stromal cells were derived from benign prostatic hyperplasia tissue. Affymetrix U133 Plus 2.0 whole genome arrays were used to compare global gene expression between these cells, and to quantify changes in gene expression following exposure to physiologically appropriate concentrations of SF and IB. Ontology and pathway analyses were used to interpret results. Changes in expression of a subset of genes were confirmed by real-time RT-PCR. RESULTS: Global gene expression profiling identified epithelial and stromal-specific gene expression profiles. SF induced more changes in epithelial cells, whereas IB was more effective in stromal cells. Although IB and SF induced different changes in gene expression in both epithelial and stromal cells, these were associated with similar pathways, such as cell cycle and detoxification. Both ITCs increased expression of PLAGL1, a tumor suppressor gene, in stromal cells and suppressed expression of the putative tumor promoting genes IFITM1, CSPG2, and VIM in epithelial cells. CONCLUSION: These data suggest that IB and SF both alter genes associated with cancer prevention, and IB should be investigated further as a potential chemopreventative agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are two predominant theories for lumen formation in tissue morphogenesis: cavitation driven by cell death, and membrane separation driven by epithelial polarity. To define the mechanism of lumen formation in prostate acini, we examined both theories in several cell lines grown in three-dimensional (3D) Matrigel culture. Lumen formation occurred early in culture and preceded the expression of cell death markers for apoptosis (active caspase 3) and autophagy (LC-3). Active caspase 3 was expressed by very few cells and inhibition of apoptosis did not suppress lumen formation. Despite LC-3 expression in all cells within a spheroid, this was not associated with cell death. However, expression of a prostate-secretory protein coincided with lumen formation and subsequent disruption of polarized fluid movement led to significant inhibition of lumen formation. This work indicates that lumen formation is driven by the polarized movement of fluids and proteins in 3D prostate epithelial models and not by cavitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods: An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results: Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion: Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. © 2013 Barr et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies demonstrated endogenous expression level of Sox2, Oct-4 and c-Myc is correlated with the pluripotency and successful induction of induced pluripotent stem cells (iPSCs). Periondontal ligament cells (PDLCs)have multi-lineage diferentiation capability and ability to maintain undifferentiated stage, which makes PDLCs a suitable cell source for tissue repair and regeneration. To elucidate the effect of in vitro culture condition on the stemness potential of PDLCs, we explored the cell growth, proliferation, cell cycle, and the expression of Sox2, Oct-4 and c-Myc in PDLCs from passage 1 to 7 with or without the addition of recombinant human BMP4(rhBMP4). Our results revealed that BMP-4 promoted cell growth and proliferation, arrested PDLCs in S phase of cell cycle and upregulated PI value. It was revealed that without the addition of rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs only maintained nucleus location until passage 3, then lost nucleus location subsequently. The mRNA expression in PDLCs further confirmed that the level of Sox2 and Oct-4 peaked at passage 3, then decreased afterwards, whereas c-Myc maintained consistently upregulation along passages. after the treatment with rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs maintained nucleus location even at passage 7 and the mRNA expression of Sox2 and Oct-4 significantly upregulated at passage 5 and 7. These results demonstrated that addition of rhBMP-4 in the culture media could improve the current culture condition for PDLCs to maintain in an undifferentiated stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr308 and Ser473 nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain–containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser473 in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser473 in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser473 in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser473 and reveal an mTORC2-BSTA-Akt1-FoxC2–mediated signaling mechanism that is critical for adipocyte differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS: Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS: Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS: This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.