855 resultados para glucose infusion
Resumo:
Gluconeogenic activity and kinetic parameters of glucose metabolism were estimated during the different phases of prolonged food deprivation in quails. Gluconeogenic activity, estimated from the rate of increase of incorporation of (HCO3-)-C-14 into circulating glucose, was significantly higher in fasted quails than in fed birds, whatever the period of food deprivation. However, gluconeogenic activity during phase II, although higher than in the fed state, was significantly lower than in quails fasted for 2 days (phase I) or in those on the final (phase III) period of starvation. Gluconeogenic activity did not differ significantly in birds from phases I and III. Rates of glucose replacement, estimated with [6-H-3]-glucose, were very high (20.5 mg . kg(-1). min(-1)) in fed quails and were markedly reduced (to about 42% of fed values) by fasting, no difference being observed between quails fasted for 2 and 5 days. Because of the poor condition of the birds, glucose replacement rates could not be measured during phase III. The present data are the first to provide direct evidence for the changes in gluconeogenesis which occur during prolonged food deprivation.
Resumo:
Glucose-induced insulin secretion rom and Ca-45 uptake by isolated pancreatic islets, derived from rats fed with normal (NPD) or low protein diet (LPD), were studied. Insulin secretion from both types of islets in response to increasing concentrations of glucose followed an S-shaped pattern. However, basal secretion observed at substimulatory concentrations of glucose (0-5.6 mM), as well as maximal release, obtained at 16.7 mM or higher glucose concentrations were significantly reduced in islets from LPD. Furthermore, in LPD rat islets, the dose-response curve to glucose was clearly shifted to the right compared with NPD islets, with the half-maximal response occurring at 8.5 and 14.4 mM glucose for NPD and LPD islets, respectively. In islets from NPD rats, the Ca-45 content, after 5 or 90 min in the presence of 8.3 mM glucose, was higher than that observed for islets kept at 2.8 mM glucose and increased further at 16.7 mM glucose. After 5 min of incubation, the Ca-45 uptake by LPD islets in the presence of 8.3 mM glucose was slightly higher than basal values (2.8 mM glucose); however, no further increase in the Ca-45 uptake was noticed at 16.7 mM glucose. In LPD islets a significant increase in Ca-45 uptake over basal values was registered only at 16.7 mM glucose, after 90 min of incubation. These data indicate that the poor secretary response to glucose observed in islets from LPD rats may be related to a defect in the ability of glucose to increase Ca2+ uptake and/or to reduce Ca2+ efflux from beta-cells.
Resumo:
Reports in the literature have shown that acute or chronic zinc administration may cause hyperglycemia, with a fall in serum or insular insulin occurring in experimental animals. on the other hand, under conditions of both acute and chronic hyperglycemia, an increase, a decrease, or a normal level of blood zinc has been observed in studies conducted on humans. Thus, the objective of the investigation described here was to determine the relationship existing among zinc, glucose, and insulin under acute conditions. Thirty-six subjects of both sexes (mean age, 23 yr) were tested at 7:00 A.M. after a 12-h fast. Two antecubital veins of both forearms were punctured and maintained with physiological saline. Three experiments were performed in which zinc was administered orally, and hypertonic glucose and tolbutamid were administered intravenously. Blood samples were then collected over a period ranging from 93 to 240 min after the basal times of - 30 and 0 min. Hyperzincemia did not cause changes in plasma glucose or insulin either in the absence of or during perfusion of glucose. Hyperglycemia, hypoglycemia, and hyperinsulinemia did not modify serum zinc levels. These results demonstrate that acute zinc administration did not change carbohydrate metabolism and that sudden variations in glucose and insulin levels did not modify the serum profile of zinc.
Resumo:
Steers (379 +/- 10 kg) with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square digestion trial to quantify and evaluate the relationship between intestinal protein supply and intestinal starch disappearance. Treatments were infusions of 0, 50, 100, 150, or 200 g/d of casein along with 1,042 g/d of raw cornstarch. Abomasal infusions were accomplished by passing tubing and a pliable retaining washer through the reticular-omasal orifice into the abomasum. Steers were fed a 93% corn silage, 7% supplement diet that contained 12% crude protein at 1.65% body weight in 12 equal portions/d. Periods lasted 17 d (12 d for adaptation, 2 d of collections, and 3 d of rest). The quantity and percentage of organic matter and protein disappearance from the small intestine increased linearly (P < 0.03) with infused casein. Greater quantities of starch disappeared with increased casein infusion (P < 0.01). The infusion of 200 g/d of casein increased small intestinal starch disappearance by 226 g/d over the control. Casein infusion did not affect the quantity or percent of organic matter, starch, or protein disappearance in the large intestine. Treatments did not change ruminal ammonia N, ruminal pH, or plasma glucose concentrations. Starch disappearance from the small intestine was increased with greater protein flow to the duodenum of steers.
Resumo:
Droplet countercurrent chromatography and high-performance liquid chromatography fractionation of the aqueous infusion from Maytenus aquifolium Martius leaves afforded two flavonoid tetrasaccharides: quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl(1-->3)-O-alpha-L-rhamnopranosyl( 1-->2)-O-beta-D-galactopyranoside and kaempferol 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl( 1-->3)-O-alpha-L-rhamnopyranosy(1-->2-2)-O-beta-D-galactopyranoside. All structures were elucidated by spectroscopic methods. Pharmacological essays of the infusion showed antiulcer activity in rats.
Resumo:
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.
Resumo:
The midbrain dorsal periaqueductal gray (DPAG) is part of the brain defensive system involved in active defense reactions to threatening stimuli. Corticotrophin releasing factor (CRF) is a peptidergic neurotransmitter that has been strongly implicated in the control of both behavioral and endocrine responses to threat and stress. We investigated the effect of the nonspecific CRF receptor agonist, ovine CRF (oCRF), injected into the DPAG of mice, in two predator-stress situations, the mouse defense test battery (MDTB), and the rat exposure test (RET). In the MDTB, oCRF weakly modified defensive behaviors in mice confronted by the predator (rat); e.g. it increased avoidance distance when the rat was approached and escape attempts (jump escapes) in forced contact. In the RET, drug infusion enhanced duration in the chamber while reduced tunnel and surface time, and reduced contact with the screen which divides the subject and the predator. oCRF also reduced both frequency and duration of risk assessment (stretch attend posture: SAP) in the tunnel and tended to increase freezing. These findings suggest that patterns of defensiveness in response to low intensity threat (RET) are more sensitive to intra-DPAG oCRF than those triggered by high intensity threats (MDTB). Our data indicate that CRF systems may be functionally involved in unconditioned defenses to a predator, consonant with a role for DPAG CRF systems in the regulation of emotionality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objective-To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.Animals-8 adult cats.Procedures-On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 mu g/kg/min,IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (>= 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).Results-In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 mu g of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 mu g of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 mu g/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.Conclusions and Clinical Relevance-Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 mu g/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.
Resumo:
Twelve isolates of Paracoccidioides brasiliensis generated cerebriform colonies at room temperature on potato glucose agar slants (PDA). These isolates contained abundant chlamydospores and yeast-like cells and are a subset of the 65 isolates obtained from nine-banded armadillos (Dasypus novemcinctus). They grew as a yeast form with typical multiple buddings at 37 degreesC on brain heart infusion agar supplemented with 1% glucose. After replating on PDA and culturing at room temperature for 2 months, the mutants appeared as cottonous colonies, which indicated that the morphological characteristics were unstable.
Resumo:
The isolation of three new triterpene saponins 3beta-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-2-O-acetylara-binopyranosylolean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (2), 3beta-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-O-arabinopyranosylurs-12-en-28-oic acid (3), and 3beta-O-beta-D-glucopyranosyl-(1-->2)-beta-D-O-galactopyranosylurs-12-en-28-oic acid (4) together with five known saponins and one flavonoid glycoside from the aqueous infusion of flex amara (Vellozo) Loes. leaves is reported. All structures were elucidated by spectroscopic methods, including the concerted application of one-dimensional (H-1, TOCSY, C-13, and C-13 DEPT NMR) and two-dimensional NMR techniques (DQF-COSY, HSQC, and HMBC).