952 resultados para eddy covariance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptions of weighted rank regression to the accelerated failure time model for censored survival data have been successful in yielding asymptotically normal estimates and flexible weighting schemes to increase statistical efficiencies. However, for only one simple weighting scheme, Gehan or Wilcoxon weights, are estimating equations guaranteed to be monotone in parameter components, and even in this case are step functions, requiring the equivalent of linear programming for computation. The lack of smoothness makes standard error or covariance matrix estimation even more difficult. An induced smoothing technique overcame these difficulties in various problems involving monotone but pure jump estimating equations, including conventional rank regression. The present paper applies induced smoothing to the Gehan-Wilcoxon weighted rank regression for the accelerated failure time model, for the more difficult case of survival time data subject to censoring, where the inapplicability of permutation arguments necessitates a new method of estimating null variance of estimating functions. Smooth monotone parameter estimation and rapid, reliable standard error or covariance matrix estimation is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of estimating a population size from successive catches taken during a removal experiment and propose two estimating functions approaches, the traditional quasi-likelihood (TQL) approach for dependent observations and the conditional quasi-likelihood (CQL) approach using the conditional mean and conditional variance of the catch given previous catches. Asymptotic covariance of the estimates and the relationship between the two methods are derived. Simulation results and application to the catch data from smallmouth bass show that the proposed estimating functions perform better than other existing methods, especially in the presence of overdispersion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differences in opportunities and outcomes in the workplace are inherent in a free and competitive market. However when differences between individuals and groups are identified as resulting from particular policies, behaviours or attitudes, any resulting inequality may be identified as unfair. Increasingly, unfair disparities in societies and their workplaces are regularly challenged. Many of the unfair disparities are recognised as caused through unfair discrimination (Anker 1997). When defining discrimination, the International Labour Organization Convention (ILO) No. 111 defines it as “any distinction, exclusion or preference made on the basis of race, colour, sex, religion, political opinion, national extraction, or social origin, which has the effect of nullifying or impairing equality of opportunity or treatment in employment or occupation” (ILO, 1958). Yet, the argument for addressing this ideal of ‘equality of opportunity’ is complex. Ekmekci (2013) identifies the difficulties as the determination of whether any process should be based on equality of opportunity or equality of outcome. In addition, there is the difficulty of determining what exactly constitutes a process for addressing unfair disparity due to the haziness of what constitutes discrimination and controversy in the meaning as well as policy implications of equality (Tomei, 2003).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.