818 resultados para driver information systems, genetic algorithms, prediction theory, transportation
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper a genetic algorithm based reconfiguration method is proposed to minimize the real power losses of distribution systems. The main innovation of this research work is that new types of crossover and mutation operators are proposed, such that the best possible results are obtained, with an acceptable computational effort. The crossover and mutation operators were developed so as to take advantage of the particular characteristics of distribution systems (as the radial topology). Simulation results indicate that the proposed method is very efficient, being able to find excellent configurations, with low computational effort, especially for larger systems. ©2007 IEEE.
Resumo:
This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.
Resumo:
Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.
Resumo:
Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.
Resumo:
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.
Resumo:
"Sponsoring/monitoring agency report number: DOT-FHWA-JPO-97-008"--Report documentation page.
Resumo:
"December 2000"--P. [4] of cover.
Resumo:
Power systems rely greatly on ancillary services in maintaining operation security. As one of the most important ancillary services, spinning reserve must be provided effectively in the deregulated market environment. This paper focuses on the design of an integrated market for both electricity and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the ISO's total payment while ensuring system security. Genetic algorithms are used in the finding of the global optimal solutions for this dispatching problem. Case studies and corresponding analyses haw been carried out to demonstrate and discuss the efficiency and usefulness of the proposed market.
Resumo:
Finding single pair shortest paths on surface is a fundamental problem in various domains, like Geographic Information Systems (GIS) 3D applications, robotic path planning system, and surface nearest neighbor query in spatial database, etc. Currently, to solve the problem, existing algorithms must traverse the entire polyhedral surface. With the rapid advance in areas like Global Positioning System (CPS), Computer Aided Design (CAD) systems and laser range scanner, surface models axe becoming more and more complex. It is not uncommon that a surface model contains millions of polygons. The single pair shortest path problem is getting harder and harder to solve. Based on the observation that the single pair shortest path is in the locality, we propose in this paper efficient methods by excluding part of the surface model without considering them in the search process. Three novel expansion-based algorithms are proposed, namely, Naive algorithm, Rectangle-based Algorithm and Ellipse-based Algorithm. Each algorithm uses a two-step approach to find the shortest path. (1) compute an initial local path. (2) use the value of this initial path to select a search region, in which the global shortest path exists. The search process terminates once the global optimum criteria are satisfied. By reducing the searching region, the performance is improved dramatically in most cases.
Resumo:
A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
* Work partially supported by contribution of EU commission Under The Fifth Framework Programme, project “MolCoNet” IST-2001-32008.