673 resultados para deformation microstructure
Resumo:
The increase in the number of financial restatements in recent years has resulted in a significant decrease in the amount of market capitalization for restated companies. Prior literature did not differentiate between single and multiple restatements announcements. This research investigated the inter-relationships among multiple financial restatements, corporate governance, market microstructure and the firm’s rate of return in the form of three essays by differentiating between single and multiple restatement announcement companies. First essay examined the stock performance of companies announcing the financial restatement multiple times. The postulation is that prior research overestimates the abnormal return by not separating single restatement companies from multiple restatement companies. This study investigated how market penalizes the companies that announce restatement more than once. Differentiating the restatement announcement data based on number of restatement announcements, the results supported the non persistence hypothesis that the market has no memory and negative abnormal returns obtained after each of the restatement announcements are completely random. Second essay examined the multiple restatement announcements and its perceived resultant information asymmetry around the announcement day. This study examined the pattern of information asymmetry for these announcements in terms of whether the bid-ask spread widens around the announcement day. The empirical analysis supported the hypotheses that the spread does widen not only around the first restatement announcement day but around every subsequent announcement days as well. The third essay empirically examined the financial and corporate governance characteristics of single and multiple restatement announcements companies. The analysis showed that corporate governance variables influence the occurrence of multiple restatement announcements and can distinguish multiple restatements announcement companies from single restatement announcement companies.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.
Resumo:
Bankruptcy prediction has been a fruitful area of research. Univariate analysis and discriminant analysis were the first methodologies used. While they perform relatively well at correctly classifying bankrupt and nonbankrupt firms, their predictive ability has come into question over time. Univariate analysis lacks the big picture that financial distress entails. Multivariate discriminant analysis requires stringent assumptions that are violated when dealing with accounting ratios and market variables. This has led to the use of more complex models such as neural networks. While the accuracy of the predictions has improved with the use of more technical models, there is still an important point missing. Accounting ratios are the usual discriminating variables used in bankruptcy prediction. However, accounting ratios are backward-looking variables. At best, they are a current snapshot of the firm. Market variables are forward-looking variables. They are determined by discounting future outcomes. Microstructure variables, such as the bid-ask spread, also contain important information. Insiders are privy to more information that the retail investor, so if any financial distress is looming, the insiders should know before the general public. Therefore, any model in bankruptcy prediction should include market and microstructure variables. That is the focus of this dissertation. The traditional models and the newer, more technical models were tested and compared to the previous literature by employing accounting ratios, market variables, and microstructure variables. Our findings suggest that the more technical models are preferable, and that a mix of accounting and market variables are best at correctly classifying and predicting bankrupt firms. Multi-layer perceptron appears to be the most accurate model following the results. The set of best discriminating variables includes price, standard deviation of price, the bid-ask spread, net income to sale, working capital to total assets, and current liabilities to total assets.
Resumo:
Exchange traded funds (ETFs) have increased significantly in popularity since they were first introduced in 1993. However, there is still much that is unknown about ETFs in the extant literature. This dissertation attempts to fill gaps in the ETF literature by using three related essays. In these three essays, we compare ETFs to closed ended mutual funds (CEFs) by decomposing the bid-ask spread into its three components; we look at the intraday shape of ETFs and compare it to the intraday shape of equities as well as examine the co-integration factor between ETFs on the London Stock Exchange and the New York Stock Exchange; we also examine the differences between leveraged ETFs and unleveraged ETFs by analyzing the impact of liquidity and volatility. These three essays are presented in Chapters 1, 2, and 3, respectively. ^ Chapter one uses the Huang and Stoll (1997) model to decompose the bid-ask spread in CEFs and ETFs for two distinct periods—a normal and a volatile period. We show a higher adverse selection component for CEFs than for ETFs without regard to volatility. However, both ETFs and CEFs increased in magnitude of the adverse selection component in the period of high volatility. Chapter two uses a mix of the Werner and Kleidon (1993) and the Hupperets and Menkveld (2002) methods to get the intraday shape of ETFs and analyze co-integration between London and New York trading. We find two different shapes for New York and London ETFs. There also appears to be evidence of co-integration in the overlapping two-hour trading period but not over the entire trading day for the two locations. The third chapter discusses the new class of ETFs called leveraged ETFs. We examine the liquidity and depth differences between unleveraged and leveraged ETFs at the aggregate level and when the leveraged ETFs are classified by the leveraged multiples of -3, -2, -1, 2, and 3, both for a normal and a volatile period. We find distinct differences between leveraged and unleveraged ETFs at the aggregate level, with leveraged ETFs having larger spreads than unleveraged ETFs. Furthermore, while both leveraged and unleveraged ETFs have larger spreads in high volatility, for the leveraged ETFs the change in magnitude is significantly larger than for the unleveraged ETFs. Among the multiples, the -2 leveraged ETF is the most pronounced in its liquidity characteristics, more so in volatile times. ^
Resumo:
The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.
Resumo:
The increase in the number of financial restatements in recent years has resulted in a significant decrease in the amount of market capitalization for restated companies. Prior literature does not differentiate between single and multiple restatements announcements. This research investigates the inter-relationships among multiple financial restatements, corporate governance, market microstructure and the firm's rate of return in the form of three essays by differentiating between single and multiple restatement announcement companies. First essay examines the stock performance of companies announcing the financial restatement multiple times. The postulation is that prior research overestimates the abnormal return by not separating single restatement companies from multiple restatement companies. This study investigates how market penalizes the companies that announce restatement more than once. Differentiating the restatement announcement data based on number of restatement announcements, the results support for non persistence hypothesis that the market has no memory and negative abnormal returns obtained after each of the restatement announcements are completely random. Second essay examines the multiple restatement announcements and its perceived resultant information asymmetry around the announcement day. This study examines the pattern of information asymmetry for these announcements in terms of whether the bid-ask spread widens around the announcement day. The empirical analysis supports the hypotheses that the spread does widen not only around the first restatement announcement day but around every subsequent announcement days as well. The third essay empirically examines the financial and corporate governance characteristics of single and multiple restatement announcements companies. The analysis shows that corporate governance variables influence the occurrence of multiple restatement announcements and can distinguish multiple restatements announcement companies from single restatement announcement companies.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
This data set includes the profiling measurements collected from ship during the cruise HM 2012610 onboard the Research Vessel Håkon Mosby. The cruise was conducted under the project entitled "Faroe Bank Channel Overflow: Dynamics and Mixing Research", with an objective to investigate the mixing and entrainment of the dense oceanic overflow from the Faroe Bank Channel. The profiling measurements delivered with this data set include conventional conductivity-temperature-depth (CTD) measurements, current profile measurements using a lowered acoustic Doppler Current Profiler (LADCP) system and ocean microstructure measurements using a vertical microstructure profiler (VMP2000). The observational programme was designed to measure turbulence and mixing in the overflow plume which, in addition to the shear-induced mixing at the plume-ambient interface, is hypothesized to be influenced by several processes including mesoscale eddies, secondary circulation and internal waves.
Resumo:
From an economic standpoint, the powder metallurgy (P/M) is a technique widely used for the production of small parts. It is possible, through the P/M and prior comminution of solid waste such as ferrous chips, produce highly dense sintered parts and of interest to the automotive, electronics and aerospace industries. However, without prior comminution the chip, the production of bodies with a density equal to theoretical density by conventional sintering techniques require the use of additives or significantly higher temperatures than 1250ºC. An alternative route to the production of sintered bodies with high density compaction from ferrous chips (≤ 850 microns) and solid phase sintering is a compression technique under high pressure (HP). In this work, different compaction pressures to produce a sintered chip of SAE 1050 carbon steel were used. Specifically, the objective was to investigate them, the effect of high pressure compression in the behavior of densification of the sintered samples. Therefore, samples of the chips from the SAE 1050 carbon steel were uniaxially cold compacted at 500 and 2000 MPa, respectively. The green compacts obtained were sintered under carbon atmosphere at 1100 and 1200°C for 90 minutes. The heating rate used was 20°C/min. The starting materials and the sintered bodies were characterized by optical microscopy, SEM, XRD, density measurements (geometric: mass/volume, and pycnometry) and microhardness measurements Vickers and Rockwell hardness. The results showed that the compact produced under 2000 MPa presented relative density values between 93% and 100% of theoretical density and microhardness between 150 HV and 180 HV, respectively. In contrast, compressed under 500 MPa showed a very heterogeneous microstructure, density value below 80% of theoretical density and structural conditions of inadequate specimens for carrying out the hardness and microhardness measurements. The results indicate that use of the high pressure of ferrous chips compression is a promising route to improve the sinterability conditions of this type of material, because in addition to promoting greater compression of the starting material, the external tension acts together with surface tension, functioning as the motive power for sintering process. Additionally, extremely high pressures allow plastic deformation of the material, providing an intimate and extended contact of the particles and eliminating cracks and pores. This tends to reduce the time and / or temperature required for good sintering, avoiding excessive grain growth without the use of additives. Moreover, higher pressures lead to fracture the grains in fragile or ductile materials highly hardened, which provides a starting powder for sintering, thinner, without the risk of contamination present when previous methods are used comminution of the powder.
Desenvolvimento da célula base de microestruturas periódicas de compósitos sob otimização topológica
Resumo:
This thesis develops a new technique for composite microstructures projects by the Topology Optimization process, in order to maximize rigidity, making use of Deformation Energy Method and using a refining scheme h-adaptative to obtain a better defining the topological contours of the microstructure. This is done by distributing materials optimally in a region of pre-established project named as Cell Base. In this paper, the Finite Element Method is used to describe the field and for government equation solution. The mesh is refined iteratively refining so that the Finite Element Mesh is made on all the elements which represent solid materials, and all empty elements containing at least one node in a solid material region. The Finite Element Method chosen for the model is the linear triangular three nodes. As for the resolution of the nonlinear programming problem with constraints we were used Augmented Lagrangian method, and a minimization algorithm based on the direction of the Quasi-Newton type and Armijo-Wolfe conditions assisting in the lowering process. The Cell Base that represents the composite is found from the equivalence between a fictional material and a preescribe material, distributed optimally in the project area. The use of the strain energy method is justified for providing a lower computational cost due to a simpler formulation than traditional homogenization method. The results are presented prescription with change, in displacement with change, in volume restriction and from various initial values of relative densities.
Resumo:
Financial support of this research by The Royal Society, UK (IE121116), The Carnegie Trust for the Universities of Scotland, UK (Trust Reference 31747) and DFG (PI 785/3-2, PI 785/1-2), Germany, is gratefully acknowledged. We thank Dr. S. Roy (KIT) for providing the microstructure images and Professor I. Tsukrov (University of New Hampshire, USA) for helpful discussions.
Resumo:
Acknowledgements This work has been supported by Reservoir Characterisation Project (www.rechproject.com) and FAR Project 2014 "Characterisation and modelling of natural reservoirs of geofluids in fractured carbonate rocks", funded by the University of Camerino, coordinator Emanuele Tondi.
Resumo:
Acknowledgments This work was carried out with support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – Brazil, BG-Brazil and the University of Aberdeen. We would like to thank the following geologists for their support, camaraderie and countless hours of fieldwork: Claus Fallgatter, Victoria Valdez, Carla Puigdomenech, Guilherme Bozetti, Roberto Noll Filho and Arthur Giovannini, and we thank Lorena Moscardelli and an anonymous reviewer, whose constructive comments helped to improve the manuscript.