972 resultados para data transformation
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Mestrado em Engenharia Mecânica – Especialização Gestão Industrial
Resumo:
Mestrado Em Engenharia Mecânica - Ramo Gestão Industrial
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão
Resumo:
Dissertation submitted to obtain a Ph.D. (Doutoramento) degree in Biology at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
Resumo:
Linear unmixing decomposes an hyperspectral image into a collection of re ectance spectra, called endmember signatures, and a set corresponding abundance fractions from the respective spatial coverage. This paper introduces vertex component analysis, an unsupervised algorithm to unmix linear mixtures of hyperpsectral data. VCA exploits the fact that endmembers occupy vertices of a simplex, and assumes the presence of pure pixels in data. VCA performance is illustrated using simulated and real data. VCA competes with state-of-the-art methods with much lower computational complexity.
Resumo:
The importance of wind power energy for energy and environmental policies has been growing in past recent years. However, because of its random nature over time, the wind generation cannot be reliable dispatched and perfectly forecasted, becoming a challenge when integrating this production in power systems. In addition the wind energy has to cope with the diversity of production resulting from alternative wind power profiles located in different regions. In 2012, Portugal presented a cumulative installed capacity distributed over 223 wind farms [1]. In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.
Resumo:
A study was conducted on 16 patients with pemphigus foliaceus, ten of them with the localized form (group G1) and six with the disseminated form (group G2). These patients were submitted to full blood counts, quantitation of mononuclear cell subpopulations by monoclonal antibodies, study of blastic lymphocyte transformation, and quantitation of circulating antibodies by the indirect immunofluorescence test, in order to correlate their clinical signs and symptoms and laboratory data with their immunological profile, and to determine the relationship between circulating autoantibody titers and lesion intensity and course of lesions under treatment. Leucocytosis was observed especially in group G2. All patients showed decreased relative CD3+ and CD4+ values and a tendency to decreased relative values of the CD8+ subpopulation. Blastic lymphocyte transformation indices in the presence of phytohemagglutinin were higher in patients (group G1+G2) than in controls. The indirect immunofluorescence test was positive in 100% of G2 patients and in 80% of G1 patients. The median value for the titers was higher in group G2 than in group G1. Analysis of the results as a whole permits us to conclude that cell immunity was preserved and that there was a relationship between antibody titers detected by the direct immunofluorescence test and extent of skin lesions.
Resumo:
Este trabalho centra-se no estudo do aproveitamento expectável do maciço rochoso da pedreira da Curviã N.o 2 (Joane, Vila Nova de Famalicão, no N Portugal), através da obtenção de um bloco unitário tipo que forneça indicações para a exploração do recurso geológico para fins industriais e/ou ornamentais. Desta forma, investiga-se se num dado limite de zona geotécnica do maciço rochoso e propicio a obtenção de blocos com dimensão, avaliados apos o processo de transformação, nomeadamente, para enrocamento em obras marítimas ou balastro em obras ferroviárias. Foram seleccionados diversos afloramentos, tendo-se recorrido a técnica de amostragem linear as superfícies expostas do maciço. Esta técnica e uma das formas mais expeditas de coligir dados geológico-geotécnicos relativos as descontinuidades. Procedeu-se, ainda, a um tratamento estatístico das descontinuidades, bem como dos parâmetros geológico-geotécnicos e geomecânicos a estas associadas, propostos pela Sociedade Internacional de Mecânica das Rochas (ISRM). Todos os dados foram representados cartograficamente numa base apoiada pelos Sistemas de Informação Geográfica (SIG) e utilizadas as ferramentas de geologia estrutural, analise morfotectónica, modelação digital de terreno e cartografia de zonamento geotécnico. O zonamento geotécnico do maciço granítico foi realizado sempre em estreita ligação com o conhecimento das características do maciço ”in situ”. Pretende-se que esta metodologia contribua para um melhor conhecimento da compartimentação dos maciços rochosos em geral e, em particular, do modelo geotécnico comportamental do maciço rochoso da Curviã N.o2.
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão da Informação
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.