949 resultados para conformational map
Resumo:
We use a series expansion method introduced recently by Rickman and Phillpot (Phys. Rev. Lett. 1991, 66, 349) to study the temperature dependent conformational properties of short ionized polyelectrolyte chains in ionic solutions by conducting simulations at a single temperature. The charged beads located at the sites of a cubic lattice interact through screened Coulombic interactions. It is shown that this method provides results that correlate with other Monte Carlo simulations, performed over a range of temperatures, where conformational transitions induced by thermal and screening effects occur. It is also shown that the method can be used successfully when the potential is weakly dependent on temperature. © 1994 American Chemical Society.
Resumo:
Blackwell Publishing Ltd. A linkage map of the Ixodes scapularis genome was constructed, based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 F1 intercross progeny from a single, field-collected P1 female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ~ 10 9 bp, the relationship of physical to genetic distance was found to be ~ 300 kb/cM in the I. scapularis genome.
Resumo:
A linkage map of the Ixodes scapularis genome was constructed based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 F1 intercross progeny from a single, field-collected P1 female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ∼109 bp, the relationship of physical to genetic distance is ∼300 kb/cM in the I. scapularis genome.
Resumo:
In this paper, the main features of Raman spectroscopy, one of the first choice methods in the study of polymorphism in pharmaceuticals, are presented taking chlorpropamide as a case of study. The antidiabetic drug chlorpropamide (1-[4-chlorobenzenesulphonyl]-3-propyl urea), which belongs to the sulfonylurea class, is known to exhibit, at least, six polymorphic phases. These forms are characterized not only by variations in their molecular packing but also in their molecular conformation. In this study, the polymorphism of chlorpropamide is discussed on the basis of Raman scattering measurements and quantum mechanical calculations. The main spectroscopic features that fingerprint the crystalline forms are correlated with the corresponding crystalline structures. Using a theoretical approach on the energy dependence of the conformers, simulated molecular torsion angles are plotted versus the formation energy, which provides a satisfactory agreement between the torsion angles at the energy minima and the experimental values observed in the different solid forms of chlorpropamide. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.
Resumo:
Background: The development of sugarcane as a sustainable crop has unlimited applications. The crop is one of the most economically viable for renewable energy production, and CO2 balance. Linkage maps are valuable tools for understanding genetic and genomic organization, particularly in sugarcane due to its complex polyploid genome of multispecific origins. The overall objective of our study was to construct a novel sugarcane linkage map, compiling AFLP and EST-SSR markers, and to generate data on the distribution of markers anchored to sequences of scIvana_1, a complete sugarcane transposable element, and member of the Copia superfamily. Results: The mapping population parents ('IAC66-6' and 'TUC71-7') contributed equally to polymorphisms, independent of marker type, and generated markers that were distributed into nearly the same number of co-segregation groups (or CGs). Bi-parentally inherited alleles provided the integration of 19 CGs. The marker number per CG ranged from two to 39. The total map length was 4,843.19 cM, with a marker density of 8.87 cM. Markers were assembled into 92 CGs that ranged in length from 1.14 to 404.72 cM, with an estimated average length of 52.64 cM. The greatest distance between two adjacent markers was 48.25 cM. The scIvana_1-based markers (56) were positioned on 21 CGs, but were not regularly distributed. Interestingly, the distance between adjacent scIvana_1-based markers was less than 5 cM, and was observed on five CGs, suggesting a clustered organization. Conclusions: Results indicated the use of a NBS-profiling technique was efficient to develop retrotransposon-based markers in sugarcane. The simultaneous maximum-likelihood estimates of linkage and linkage phase based strategies confirmed the suitability of its approach to estimate linkage, and construct the linkage map. Interestingly, using our genetic data it was possible to calculate the number of retrotransposonscIvana_1 (similar to 60) copies in the sugarcane genome, confirming previously reported molecular results. In addition, this research possibly will have indirect implications in crop economics e. g., productivity enhancement via QTL studies, as the mapping population parents differ in response to an important fungal disease.
Resumo:
An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.
Resumo:
In this article we present some results of ground-penetrating radar (GPR) studies carried out at the Lapa do Santo archaeological site. This cave is within the Lagoa Santa karstic region, Minas Gerais State, Brazil. Results from 44 GPR profiles obtained with 400 MHz shielded antennas indicated anomalous hyperbolic reflections and areas with high sub-horizontal reflection amplitude suggesting archaeological and geological potential targets, respectively. These results were encouraging and were used to guide excavations at this site. Excavation of test units (metre by metre) allowed identifying an anthropogenic feature, e.g., a fire hearth structure and natural features, such as a stalagmite and top of bedrock. Results also indicated the importance of the GPR survey as a tool for orienting archaeological researches, increasing the probability of finding archaeological interest targets in an excavation program in an area of environmental protection.
Resumo:
The classic approach to gene discovery relies on the construction of linkage maps. We report the first molecular-based linkage map for Drosophila mediopunctata, a neotropical species of the tripunctata group. Eight hundred F2 individuals were genotyped at 49 microsatellite loci, resulting in a map that is approximate to 450 centimorgans long. Five linkage groups were detected, and the species' chromosomes were identified through cross-references to BLASTn searches and Muller elements. Strong synteny was observed when compared with the Drosophila melanogaster chromosome arms, but little conservation in the gene order was seen. The incorporation of morphological data corresponding to the number of central abdominal spots on the map was consistent with the expected location of a genomic region responsible for the phenotype on the second chromosome.
Resumo:
Using the Plucker map between grassmannians, we study basic aspects of classic grassmannian geometries. For 'hyperbolic' grassmannian geometries, we prove some facts (for instance, that the Plucker map is a minimal isometric embedding) that were previously known in the 'elliptic' case.
Resumo:
The formation of our borders are analyzed, at first presenting the question of the demarcation line of Tordesillas and the problems that led to the abandonment of this trace to adopt a configuration thatwould deal with both the actual possession of the territory (uti possidetis) as the natural borders formed by rivers and water borders. Next, the Map of the Courts is examined, having served as the basis for the Treaty of Madrid, and it determines, actually, the current configuration of our country. An analysis is made of this cartographic document, with the aid of digital cartography, which yieldeds in the quantity of existing distortions, to modeled its trait and found out how it was built.
Resumo:
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Resumo:
This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.
Resumo:
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved.