Double point curves for corank 2 map germs from C-2 to C-3


Autoria(s): Marar, Washington Luiz; Nuno-Ballesteros, J. J.; Penafort-Sanchis, G.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved.

DGICYT [MTM2009-08933]

DGICYT

Identificador

Topology and its Applications, Amsterdam, v. 159, n. 2, Special Issue, supl. 1, Part 3, p. 526-536, feb 1, 2012

0166-8641

http://www.producao.usp.br/handle/BDPI/41157

10.1016/j.topol.2011.09.028

http://dx.doi.org/10.1016/j.topol.2011.09.028

Idioma(s)

eng

Publicador

Elsevier

Amsterdam

Relação

Topology and its Applications

Direitos

closedAccess

Copyright Elsevier B.V.

Palavras-Chave #FINITE DETERMINACY #WHITNEY EQUISINGULARITY #SYMMETRIC VARIABLES #FINITE DETERMINACY #EQUISINGULARITY #SINGULARITIES #SURFACES #3-SPACE #SINGULARIDADES #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion