Double point curves for corank 2 map germs from C-2 to C-3
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
05/11/2013
05/11/2013
2012
|
Resumo |
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved. DGICYT [MTM2009-08933] DGICYT |
Identificador |
Topology and its Applications, Amsterdam, v. 159, n. 2, Special Issue, supl. 1, Part 3, p. 526-536, feb 1, 2012 0166-8641 http://www.producao.usp.br/handle/BDPI/41157 10.1016/j.topol.2011.09.028 |
Idioma(s) |
eng |
Publicador |
Elsevier Amsterdam |
Relação |
Topology and its Applications |
Direitos |
closedAccess Copyright Elsevier B.V. |
Palavras-Chave | #FINITE DETERMINACY #WHITNEY EQUISINGULARITY #SYMMETRIC VARIABLES #FINITE DETERMINACY #EQUISINGULARITY #SINGULARITIES #SURFACES #3-SPACE #SINGULARIDADES #MATHEMATICS, APPLIED #MATHEMATICS |
Tipo |
article original article publishedVersion |