899 resultados para computer modelling
Resumo:
Abstract not available
Resumo:
Automatic analysis of human behaviour in large collections of videos is gaining interest, even more so with the advent of file sharing sites such as YouTube. However, challenges still exist owing to several factors such as inter- and intra-class variations, cluttered backgrounds, occlusion, camera motion, scale, view and illumination changes. This research focuses on modelling human behaviour for action recognition in videos. The developed techniques are validated on large scale benchmark datasets and applied on real-world scenarios such as soccer videos. Three major contributions are made. The first contribution is in the area of proper choice of a feature representation for videos. This involved a study of state-of-the-art techniques for action recognition, feature extraction processing and dimensional reduction techniques so as to yield the best performance with optimal computational requirements. Secondly, temporal modelling of human behaviour is performed. This involved frequency analysis and temporal integration of local information in the video frames to yield a temporal feature vector. Current practices mostly average the frame information over an entire video and neglect the temporal order. Lastly, the proposed framework is applied and further adapted to real-world scenario such as soccer videos. A dataset consisting of video sequences depicting events of players falling is created from actual match data to this end and used to experimentally evaluate the proposed framework.
Resumo:
Part 4: Transition Towards Product-Service Systems
Resumo:
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ2235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of the drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.