941 resultados para characteristic matrix method
Resumo:
Copaifera species (Leguminoseae) are popularly known as ""copaiba"" or ""copaiva"". The oleoresins obtained from the trunk of these species have been extensively used in folk medicine and are commercialized in Brazil as crude oil and in several pharmaceutical and cosmetic products. This work reports a complete validated method for the quantification of beta-caryophyllene, alpha-copaene, and alpha-humulene in distinct copaiba oleoresins available commercially. Thus, essential oil samples (100 mu L) were dissolved in 20 mL of hexanes containing internal standard (1,2,4,5-tetramethylbenzene, 3.0 mM) in a 25 mL glass flask. A 1 mu L aliquot was injected into the GC-FID system. A fused-silica capillary column HP-5, coated with 5% phenylmethylsiloxane was used for this study. The developed method gave a good detection response with linearity in the range of 0.10-18.74 mM. Limits of detection and quantitation variety ranged between 0.003 and 0.091 mM. beta-Caryophyllene, alpha-copaene, and alpha-humulene were recovered in a range from 74.71% to 88.31%, displaying RSD lower than 10% and relative errors between -11.69% and -25.30%. Therefore, this method could be considered as an analytical tool for the quality control of different Copaifera oil samples and its products in both cosmetic and pharmaceutical companies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a simple and reliable HPLC method to evaluate the influence of two currently available photostabilizers on cosmetic formulations containing combined UV-filters and vitamins A and E. Vitamins and UV-filters, widely encountered in products of daily use have to be routinely evaluated since photoinstability can lead to reductions in their efficacy and safety. UV-irradiated formulation samples were submitted to a procedure that included a reliable, precise and specific HPLC method employing a C18 column and detection at 325 and 235 nm. Methanol, isopropanol and water were the mobile phases in gradient elution. The method precision was between 0.28 and 5.07. The photostabilizers studied [diethylhexyl 2,6-naphthalate (DEHN) and benzotriazolyl dodecyl p-cresol (BTDC)], influenced the stability of octyl methoxycinnamate (OMC) associated with vitamins A and E. BTDC was considered the best photostabilizer to vitamins and OMC when the UV-filters were combined with both vitamins A and E. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure is associated with disease conditions, including cardiovascular problems. Although the mechanisms implicated in these complications have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-2 presents genetic polymorphisms which affect the expression and activity level of this enzyme. A common polymorphism of MMP-2 gene is the C(-1306)T (rs 243865), which is known to disrupt a Sp1-type promoter site (CCACC box), thus leading to lower promoter activity associated with the T allele. This study aimed at examining how this polymorphism affects the circulating MMP-2 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-2 (TIMP-2) in 210 subjects environmentally exposed to Hg. Total blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-2 and TIMP-2 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1306)T polymorphism were determined by Taqman (R) Allele Discrimination assay. We found a positive association (p = 0.0057) between plasma Hg concentrations and MMP-2/TIMP-2 (an index of net MMP-2 activity). The C(-1306)T polymorphism modified MMP-2 concentrations (p = 0.0465) and MMP-2/TIMP-2 ratio (p = 0.0060) in subjects exposed to Hg, with higher MMP-2 levels been found in subjects carrying the C allele. These findings suggest a significant interaction between the C(-1306)T polymorphism and Hg exposure, possibly increasing the risk of developing diseases in subjects with the C allele. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure causes health problems including cardiovascular diseases. Although precise mechanisms have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-9 presents genetic polymorphisms which affect the expression and activity level of this enzyme. Two polymorphisms in the promoter region [C(-1562)T and (CA)(n)] are functionally relevant, and are implicated in several diseases. This study aimed at examining how these polymorphisms affect the circulating MMP-9 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-1 (TIMP-1) in 266 subjects environmentally exposed to Hg. Blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-9 and TIMP-1 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. We found a positive association (P<0.05) between plasma Hg concentrations and MMP-9/TIMP-1 ratio (an index of net MMP-9 activity). When the subjects were divided into tertiles with basis on their plasma Hg concentrations, we found that the (CA)(n) polymorphism modified MMP-9 concentrations and MMP-9/TIMP-1 ratio in subjects with the lowest Hg concentrations (first tertile), with the highest MMP-9 levels being found in subjects with genotypes including alleles with 21 or more CA repeats (H alleles) (P<0.05). Conversely, this polymorphism had no effects on subjects with intermediate or high plasma Hg levels (second and third tertiles, respectively). The C(-1562)T polymorphism had no effects on MMP-9 levels. These findings suggest a significant interaction between the (CA)(n) polymorphism and low levels of Hg exposure, possibly increasing the risk of developing diseases in subjects with H alleles. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure causes health problems that may result from increased oxidative stress and matrix metalloproteinase (MMP) levels. We investigated whether there is an association between the circulating levels of MMP-2, MMP-9, their endogenous inhibitors (the tissue inhibitors of metalloproteinases; TIMPs) and the circulating Hg levels in 159 subjects environmentally exposed to Hg. Blood and plasma Hg were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA respectively. Thiobarbituric acid-reactive species (TBARS) were measured in plasma to assess oxidative stress. Selenium (Se) levels were determined by ICP-MS because it is an antioxidant. The relations between bioindicators of Hg and the metalloproteinases levels were examined using multivariate regression models. While we found no relation between blood or plasma Hg and MMP-9, plasma Hg levels were negatively associated with TIMP-1 and TIMP-2 levels, and thereby with increasing MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, thus indicating a positive association between plasma Hg and circulating net MMP-9 and MMP-2 activities. These findings provide a new insight into the possible biological mechanisms of Hg toxicity, particularly in cardiovascular diseases.
Resumo:
A graphite furnace atomic absorption spectrometric method is proposed for the direct and simultaneous determination of Cd, Cu, and Se in human blood. Samples were diluted 1:10 (v/v) in 0.5% (v/v) HNO(3) + 0.5% (v/v) Triton X-100 solution. For 12 mu L injected sample volume + 5 mu L, of 1000 mg L(-1) Pd(NO(3))(2) + 3 mu L of 1000 mg L(-1) Mg(NO(3))(2), the calculated characteristic masses (mo) were 0.9 pg Cd, 16 pg Cu, and 39 pg Se, which are close to those mo values for single-element conditions for THGA furnace (1.3 pg Cd, 17 pg Cu, and 45 pg Se). Calibration curves with linear correlations better than 0.999 were obtained. The limits of detection (LOD) were 0.03 mu g L(-1) Cd, 0.075 mu g L(-1) Cu and 0.3 mu g L(-1) Se, and the relative standard deviations (n= 12) were 2.5%, 0.3%, and 1.5%, respectively. The method was applied for Cd, Cu, and Se determination in 10 human blood samples and the results were in agreement at the 95% confidence level with those obtained by inductively coupled plasma mass spectrometry. Concentrations of analytes in the selected blood samples varied from 1.7 to 3.2 mu g L(-1) Cd, 700 to 921.7 mu g L(-1) Cu, and from 68.6 to 350 mu g L(-1) Se. The accuracy of the proposed method was also evaluated by an addition-recovery experiment and recoveries of Cd, Cu, and Se added to blood samples ranged from 99-109%, 91-103%,and 93-103%, respectively.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
We developed a new method for the quantification of parasites in tissue. Trypanosoma cruzi strain CL parasites were genetically engineered to express the Escherichia coli beta-galactosidase gene, lacZ and this enzyme is able to catalyze a colorimetric reaction with chlorophenol red beta-d galactopyranoside (CPRG) as the substrate. The animals were infected with clone CL Brener strain B5 of T. cruzi and treated with benznidazole in order to verify the reduction in the number of parasites in tissue study by quantifying the enzyme beta-galactosidase. The assay demonstrates a reduction in the number of parasites in the groups treated. Thus, this test can be used to test other substances with the aim of verifying the effectiveness in the chronic phase of experimental Chagas` disease.
Resumo:
Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirao Preto, Sao Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTET (TM) QPCR SYBR (R) Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fist and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Periodontal disease shares risk factors with cardiovascular diseases and other systemic inflammatory diseases. The present study was designed to assess the circulating matrix metalloproteinases (MMPs) from chronic periodontal disease patients and, subsequently, after periodontal therapy. Methods: We compared the plasma concentrations of MMP-2. MMP-3, MMP-8, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2, and total gelatinolytic activity in patients with periodontal disease (n =28) with those of control subjects (n = 22) before and 3 months after non-surgical periodontal therapy. Results: Higher plasma MMP-3, MMP-8, and MMP-9 concentrations were found in periodontal disease patients compared with healthy controls (all P<0.05), whereas MMP-2, TIMP-1, and TIMP-2 levels were not different. Treatment decreased plasma MMP-8 and MMP-9 concentrations by 35% and 39%, respectively (both P<0.02), while no changes were found in controls. MMP-2, MMP-3, TIMP-1, and TIMP-2 remained unaltered in both groups. Plasma gelatinolytic activity was higher in periodontal disease patients compared with controls (P<0.001) and decreased after periodontal therapy (P<0.05). Conclusions: This study showed increased circulating MMP-8 and MMP-9 levels and proteolytic activity in periodontal disease patients that decrease after periodontal therapy. The effects of periodontal therapy suggest that it may attenuate inflammatory chronic diseases. (C) 2009 Published by Elsevier B.V.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in,citrate plasma, serum, and huffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.