852 resultados para carbon nanotube


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To describe single-walled carbon nanotube (SWNT) arrays, we propose a self-similar array model. For isolated SWNT bundles, the self-similar array model is consistent with the classical triangular array model; for SWNT bundle arrays, it can present hierarchy structures and specify different array configurations. Based on this self-similar array model, we calculated the energetics of SWNT arrays, investigated the driving force for the formation of macroscopic SWNT arrays, and briefly discussed the hierarchy structures in real macroscopic SWNT arrays. (c) 2005 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report an all-fiber mode-locked erbium-doped fiber laser (EDFL) employing carbon nanotube (CNT) polymer composite film. By using only standard telecom grade components, without any complex polarization control elements in the laser cavity, we have demonstrated polarization locked vector solitons generation with duration of ~583fs , average power of ~3 mW (pulse energy of 118pJ ) at the repetition rate of ~25.7 MHz.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrical and thermal transport properties of the carbon nanotube bulk material compacted by spark plasma sintering have been investigated. The electrical conductivity of the as-prepared sample shows a lnT dependence from 4 to 50 K, after which the conductivity begins to increase approximately linearly with temperature. A magnetic field applied perpendicularly to the sample increases the electrical conductivity in the range of 0-8T at all testing temperatures, indicating that the sample possesses the two-dimensional weak localization at lower temperatures (?50 K), while behaviors like a semimetal at higher temperatures (?50 K). This material acts like a uniform compact consisting of randomly distributed two dimensional graphene layers. For the same material, the thermal conductivity is found to decrease almost linearly with decreasing temperature, similar to that of a single multi-walled carbon nanotube. Magnetic fields applied perpendicularly to the sample cause the thermal conductivity to decrease significantly, but the influence of the magnetic fields becomes weak when temperature increases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphene layers have been produced from multi-walled carbon nanotube (MWCNT) bulk materials by friction when polished on ground-glass, offering a novel and effective method to produce graphene layers, which, more importantly, could be transferred to other substrates by rubbing. Field emission scanning electron microscopy, Raman spectroscopy, atomic force microscopy, transmission electron microscopy and selected area electron diffraction confirmed the formation of graphene layers. They were thought to be peeled away from the MWCNT walls due to friction. The reflection spectra showed that absorption of as-produced graphene layers decreased with wavelength in the range of 250–400 nm, compared to the MWCNT bulk material having strong absorption at 350 nm. Nanoscratch test was used to determine the mechanical properties of graphene films, suggesting the tolerance of as-produced graphene film to flaws introduced by scratch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanomaterials are an active frontier of research in current nanotechnology. Single wall Carbon Nanotube (SWNT) is a unique material which has already found several applications in photonics, electronics, sensors and drug delivery. This thesis presents a summary of the author’s research on functionalisation of SWNTs, a study of their optical properties, and potential for an application in laser physics. The first significant result is a breakthrough in controlling the size of SWNT bundles by varying the salt concentrations in N-methyl 2-pyrrolidone (NMP) through a salting out effect. The addition of Sodium iodide leads to self-assembly of CNTs into recognizable bundles. Furthermore, a stable dispersion can be made via addition polyvinylpyrrolidone (PVP) polymer to SWNTs-NMP dispersion, which indicates a promising direction for SWNT bundle engineering in organic solvents. The second set of experiments are concerned with enhancement of photoluminescence (PL), through the formation of novel macromolecular complexes of SWNTs with polymethine dyes with emission from enhanced nanotubes in the range of dye excitation. The effect appears to originate from exciton energy transfer within the solution. Thirdly, SWNT base-saturable absorbers (SA) were developed and applied to mode locking of fibre lasers. SWNT-based SAs were applied in both composite and liquid dispersion forms and achieved stable ultrashort generation at 1000nm, 1550nm, and 1800 nm for Ytterbium, Erbium and Thulium-doped fibre laser respectively. The work presented here demonstrates several innovative approaches for development of rapid functionalised SWNT-based dispersions and composites with potential for application in various photonic devices at low cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrated an Erbium-doped picosecond fiber laser mode locked by carbon nanotube in N-methyl-2-pryrrolidone solvent in an in-fiber micro-channel. © 2011 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unique electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) have made them one of the most promising candidates for next-generation nanoelectronics. Efficient utilization of the exceptional properties of SWNTs requires controlling their growth direction (e.g., vertical, horizontal) and morphologies (e.g., straight, junction, coiled). ^ In this dissertation, the catalytic effect on the branching of SWNTs, Y-shaped SWNTs (Y-SWNTs), was investigated. The formation of Y-shaped branches was found to be dependent on the composition of the catalysts. Easier carbide formers have a strong tendency to attach to the sidewall of SWNTs and thus enhance the degree of branching. Y-SWNTs based field-effect transistors (FETs) were fabricated and modulated by the metallic branch of the Y-SWNTs, exhibiting ambipolar characteristics at room temperature. A subthreshold swing of 700 mV/decade and an on/off ratio of 105 with a low off-state current of 10-13 A were obtained. The transport phenomena associated with Y- and cross-junction configurations reveals that the conduction mechanism in the SWNT junctions is governed by thermionic emission at T > 100 K and by tunneling at T < 100 K. ^ Furthermore, horizontally aligned SWNTs were synthesized by the controlled modification of external fields and forces. High performance carbon nanotube FETs and logic circuit were demonstrated utilizing the aligned SWNTs. It is found that the hysteresis in CNTFETs can be eliminated by removing absorbed water molecules on the CNT/SiO2 interface by vacuum annealing, hydrophobic surface treatment, and surface passivation. SWNT “serpentines” were synthesized by utilization of the interaction between drag force from gas flow and Van der Waals force with substrates. The curvature of bent SWNTs could be tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. Resistivity of bent SWNTs was observed to increase with curvature, which can be attributed to local deformations and possible chirality shift at curved part. ^ Our results show the successful synthesis of SWNTs having controllable morphologies and directionality. The capability of tailoring the electrical properties of SWNTs makes it possible to build an all-nanotube device by integrating SWNTs, having different functionalities, into complex circuits. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydroxyapatite (HA) has received wide attention in orthopedics, due to its biocompatibility and osseointegration ability. Despite these advantages, the brittle nature and low fracture toughness of HA often results in rapid wear and premature fracture of implant. Hence, there is a need to improve the fracture toughness and wear resistance of HA without compromising its biocompatibility. ^ The aim of the current research is to explore the potential of nanotubes as reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) composites and coatings are synthesized by spark plasma sintering and plasma spraying respectively, and investigated for their mechanical, tribological and biological behavior. CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) of HA for coating and free standing composites. CNTs have demonstrated a positive influence on the proliferation, differentiation and matrix mineralization activities of osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated titanium implant in animal model (rat) shows excellent histocompatibility and neobone integration on the implant surface. The improved osseointegration due to presence of CNTs in HA is quantified by the adhesion strength measurement of single osteoblast using nano-scratch technique. ^ Considering the ongoing debate about cytotoxicity of CNTs in the literature, the present study also suggests boron nitride nanotube (BNNT) as an alternative reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness (∼85%) and wear resistance (∼75%) of HA in the similar range as HA-CNT composites. BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite formability of BNNT surface in ∼4 days establishes its osseointegration ability.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ωcm 2) and high exchange current density (J0~2.50 mAcm -2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 - 3.1 V/μm and 4.2 - 0.4 mA, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.