998 resultados para bio-optic modeling
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Resumo:
In vivo 13C NMR spectroscopy has the unique capability to measure metabolic fluxes noninvasively in the brain. Quantitative measurements of metabolic fluxes require analysis of the 13C labeling time courses obtained experimentally with a metabolic model. The present work reviews the ingredients necessary for a dynamic metabolic modeling study, with particular emphasis on practical issues.
Resumo:
BACKGROUND: Optic perineuritis is an uncommon variety of orbital inflammatory disease that is distinct from demyelinating optic neuritis. OBJECTIVE: To describe the clinical and radiographic features of idiopathic optic perineuritis, with particular emphasis on those features that help to distinguish this condition from optic neuritis. METHODS: We reviewed the medical records of 14 patients with optic perineuritis who were seen in 2 neuro-ophthalmology clinics. RESULTS: Patients ranged in age from 24 to 60 years; 5 were older than 50 years. All patients had visual loss, eye pain, or both. The visual acuity was 20/20 or better in 8 of the 15 eyes. The results of visual field testing were normal in 2 eyes, and a paracentral scotoma or an arcuate defect was seen in 7. Magnetic resonance imaging scans demonstrated circumferential enhancement around the optic nerve, sometimes with intraorbital extension. Response to corticosteroids was dramatic; however, 4 patients had a relapse with lowering of the dose. CONCLUSIONS: In contrast to those with optic neuritis, patients with optic perineuritis are often older at onset and are more likely to show sparing of central vision. Magnetic resonance imaging scans demonstrate enhancement around, rather than within, the optic nerve. Response to corticosteroids is more dramatic than in patients with optic neuritis, and patients are more likely to experience recurrence after stopping treatment.
Resumo:
Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.
Resumo:
BACKGROUND: Metals are known endocrine disruptors and have been linked to cardiometabolic diseases via multiple potential mechanisms, yet few human studies have both the exposure variability and biologically-relevant phenotype data available. We sought to examine the distribution of metals exposure and potential associations with cardiometabolic risk factors in the "Modeling the Epidemiologic Transition Study" (METS), a prospective cohort study designed to assess energy balance and change in body weight, diabetes and cardiovascular disease risk in five countries at different stages of social and economic development. METHODS: Young adults (25-45 years) of African descent were enrolled (N = 500 from each site) in: Ghana, South Africa, Seychelles, Jamaica and the U.S.A. We randomly selected 150 blood samples (N = 30 from each site) to determine concentrations of selected metals (arsenic, cadmium, lead, mercury) in a subset of participants at baseline and to examine associations with cardiometabolic risk factors. RESULTS: Median (interquartile range) metal concentrations (μg/L) were: arsenic 8.5 (7.7); cadmium 0.01 (0.8); lead 16.6 (16.1); and mercury 1.5 (5.0). There were significant differences in metals concentrations by: site location, paid employment status, education, marital status, smoking, alcohol use, and fish intake. After adjusting for these covariates plus age and sex, arsenic (OR 4.1, 95% C.I. 1.2, 14.6) and lead (OR 4.0, 95% C.I. 1.6, 9.6) above the median values were significantly associated with elevated fasting glucose. These associations increased when models were further adjusted for percent body fat: arsenic (OR 5.6, 95% C.I. 1.5, 21.2) and lead (OR 5.0, 95% C.I. 2.0, 12.7). Cadmium and mercury were also related with increased odds of elevated fasting glucose, but the associations were not statistically significant. Arsenic was significantly associated with increased odds of low HDL cholesterol both with (OR 8.0, 95% C.I. 1.8, 35.0) and without (OR 5.9, 95% C.I. 1.5, 23.1) adjustment for percent body fat. CONCLUSIONS: While not consistent for all cardiometabolic disease markers, these results are suggestive of potentially important associations between metals exposure and cardiometabolic risk. Future studies will examine these associations in the larger cohort over time.
Resumo:
The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.
Resumo:
Hydrologic analysis is a critical part of transportation design because it helps ensure that hydraulic structures are able to accommodate the flow regimes they are likely to see. This analysis is currently conducted using computer simulations of water flow patterns, and continuing developments in elevation survey techniques result in higher and higher resolution surveys. Current survey techniques now resolve many natural and anthropogenic features that were not practical to map and, thus, require new methods for dealing with depressions and flow discontinuities. A method for depressional analysis is proposed that uses the fact that most anthropogenically constructed embankments are roughly more symmetrical with greater slopes than natural depressions. An enforcement method for draining depressions is then analyzed on those depressions that should be drained. This procedure has been evaluated on a small watershed in central Iowa, Walnut Creek of the South Skunk River, HUC12 # 070801050901, and was found to accurately identify 88 of 92 drained depressions and place enforcements within two pixels, although the method often tries to drain prairie pothole depressions that are bisected by anthropogenic features.
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.
Resumo:
We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B´ezier cubic curve segments. Considering different articulations, dynamics, andcontexts, a number of note classes is defined. Gesture parameter contours of a performance database are analyzed at note-level by following a predefined grammar that dictatescharacteristics of curve segment sequences for each of the classes into consideration. Based on dynamic programming, gesture parameter contour analysis provides an optimal curve parameter vector for each note. The informationpresent in such parameter vector is enough for reconstructing original gesture parameter contours with significant fidelity. From the resulting representation vectors, weconstruct a statistical model based on Gaussian mixtures, suitable for both analysis and synthesis of bowing gesture parameter contours. We show the potential of the modelby synthesizing bowing gesture parameter contours from an annotated input score. Finally, we point out promising applicationsand developments.
Resumo:
Pluripotency in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is regulated by three transcription factors-OCT3/4, SOX2, and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behavior of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11) and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.
Resumo:
Surface geological mapping, laboratory measurements of rock properties, and seismic reflection data are integrated through three-dimensional seismic modeling to determine the likely cause of upper crustal reflections and to elucidate the deep structure of the Penninic Alps in eastern Switzerland. Results indicate that the principal upper crustal reflections recorded on the south end of Swiss seismic line NFP20-EAST can be explained by the subsurface geometry of stacked basement nappes. In addition, modeling results provide improvements to structural maps based solely on surface trends and suggest the presence of previously unrecognized rock units in the subsurface. Construction of the initial model is based upon extrapolation of plunging surface. structures; velocities and densities are established by laboratory measurements of corresponding rock units. Iterative modification produces a best fit model that refines the definition of the subsurface geometry of major structures. We conclude that most reflections from the upper 20 km can be ascribed to the presence of sedimentary cover rocks (especially carbonates) and ophiolites juxtaposed against crystalline basement nappes. Thus, in this area, reflections appear to be principally due to first-order lithologic contrasts. This study also demonstrates not only the importance of three-dimensional effects (sideswipe) in interpreting seismic data, but also that these effects can be considered quantitatively through three-dimensional modeling.
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
Context:Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD).Objective:We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2.Results:We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C-the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2(-/-) mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2(-/-) mice.Conclusions:The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.