999 resultados para bi-learning
Resumo:
Hintergrund: Trotz ihrer Etablierung als essentieller Bestandteil der medizinischen Weiter-/Fortbildung werden europa- wie schweizweit kaum Kurse in evidenzbasierter Medizin (ebm) angeboten, die - integriert im klinischen Alltag - gezielt Fertigkeiten in ebm vermitteln. Noch grössere Defizite finden sich bei ebm- Weiterbildungsmöglichkeiten für klinische Ausbilder (z.B. Oberärzte). Als Weiterführung eines EU-finanzierten, klinisch integrierten E-learning- Programms für Weiterbildungsassistenten (www.ebm-unity.org) entwickelte eine europäische Gruppe von medical educators gezielt für Ausbilder ein e-learning-Curriculum zur Vermittlung von ebm im Rahmen der klinischen Weiterbildung. Methode: Die Entwicklung des Curriculums umfasst folgende Schritte: Beschreibung von Lernzielen, Identifikation von klinisch relevanten Lernumgebungen, Entwicklung von Lerninhalten und exemplarischen didaktischen Strategien, zugeschnitten auf die jeweilige Lernumgebungen, Design von web-basierten Selbst-Lernsequenzen mit Möglichkeiten zur Selbstevaluation, Erstellung eines Handbuchs. Ergebnisse: Lernziele des Tutoren-Lehrgangs sind der Erwerb von Fertigkeiten zur Vermittlung der 5 klassischen ebm-Schritte: PICO- (Patient-Intervention-Comparison-Outcome)-Fragen, Literatursuche, kritische Literaturbewertung, Übertragung der Ergebnisse im eigenen Setting und Implementierung). Die Lehrbeispiele zeigen angehenden ebm-Tutoren, wie sich typische klinische Situationen wie z.B. Stationsvisite, Ambulanzsprechstunde, Journalclub, offizielle Konferenzen, Audit oder das klinische Assessment von Weiterbildungsassistenten gezielt für die Vermittlung von ebm nutzen lassen. Kurze E-Learning-Module mit exemplarischen «real-life»-Video-Clips erlauben flexibles Lernen zugeschnitten auf das knappe Zeitkontingent von Ärzten. Eine Selbst-Evaluation ermöglicht die Überprüfung der gelernten Inhalte. Die Pilotierung des Tutoren-Lehrgangs mit klinisch tätigen Tutoren sowie die Übersetzung des Moduls in weitere Sprachen sind derzeit in Vorbereitung. chlussfolgerung: Der modulare Train-the-Trainer-Kurs zur Vermittlung von ebm im klinischen Alltag schliesst eine wichtige Lücke in der Dissemination von klinischer ebm. Webbasierte Beispiele mit kurzen Sequenzen demonstrieren typische Situationen zur Vermittlung der ebm-Kernfertigkeiten und bieten medical educators wie Oberärzten einen niedrigschwelligen Einstieg in «ebm» am Krankenbett. Langfristiges Ziel ist eine europäische Qualifikation für ebm- Learning und -Teaching in der Fort- und Weiterbildung. Nach Abschluss der Evaluation steht das Curriculum interessierten Personen und Gruppen unter «not-for-profit»-Bedingungen zur Verfügung. Auskünfte erhältlich von rkunz@uhbs.ch. Finanziert durch die Europäische Kommission - Leonardo da Vinci Programme - Transfer of Innovation - Pilot Project for Lifelong Learn- ing 2007 und das Schweizerische Staatssekretariat für Bildung und Forschung.
Resumo:
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.
Resumo:
Peer-reviewed
Resumo:
PURPOSE: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet. METHODS: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed. Neutral lipids were detected with oil red O, and immunohistochemistry was performed on cryostat ocular tissue sections. The retina, Bruch's membrane (BM), retinal pigment epithelium (RPE), and choriocapillaris (CC) were analyzed by transmission electron microscopy. RESULTS: Using the WT for reference, ultrastructural changes were recorded in HFC-fed SR-BI KO mice, including lipid inclusions, a patchy disorganization of the photoreceptor outer segment (POS) and the outer nuclear layer (ONL), and BM thickening with sparse sub-RPE deposits. Within the CC, there was abnormal disorganization of collagen fibers localized in ectopic sites with sparse and large vacuolization associated with infiltration of macrophages in the subretinal space, reflecting local inflammation. These lesions were associated with electroretinographic abnormalities, particularly increasing implicit time in a- and b-wave scotopic responses. Abnormal vascular endothelial growth factor (VEGF) staining was detected in the outer nuclear layer. CONCLUSIONS: HFC-fed SR-BI KO mice thus presented sub-RPE lipid-rich deposits and functional and morphologic alterations similar to some features observed in dry AMD. The findings lend further support to the hypothesis that atherosclerosis causes retinal and subretinal damage that increases susceptibility to some forms of AMD.
Resumo:
We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time
Resumo:
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong learning process; in fact, this is also the main objective of education. However, some barriers to the development of a LO economy, such as the granularity and editability of LO, must be overcome. Furthermore, some enablers, such as learning design generation and standards usage, must be promoted in order to enhance LO economy. For this article, we introduced the integration of distributed learning object repositories (DLOR) as sources of LO that could be placed in adaptive learning designs to assist teachers’ design work. Two main issues presented as a result: how to access distributed LO, and where to place the LO in the learning design. To address these issues, we introduced two processes: LORSE, a distributed LO searching process, and LOOK, a micro context-based positioning process, respectively. Using these processes, the teachers were able to reuse LO from different sources to semi-automatically generate an adaptive learning design without leaving their virtual environment. A layered evaluation yielded good results for the process of placing learning objects from controlled learning object repositories into a learning design, and permitting educators to define different open issues that must be covered when they use uncontrolled learning object repositories for this purpose. We verified the satisfaction users had with our solution
Resumo:
We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.
Analysis and evaluation of techniques for the extraction of classes in the ontology learning process
Resumo:
This paper analyzes and evaluates, in the context of Ontology learning, some techniques to identify and extract candidate terms to classes of a taxonomy. Besides, this work points out some inconsistencies that may be occurring in the preprocessing of text corpus, and proposes techniques to obtain good terms candidate to classes of a taxonomy.
Resumo:
Background: Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA) and total number of piglets born (TNB) in a three generation Iberian by Meishan F2 intercross. Results: The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P < 0.001) and SSC17 (P < 0.01) with effects on both traits. This relative paucity of significant results contrasted very strongly with the wide array of highly significant epistatic QTL that emerged in the bi-dimensional genome-wide scan analysis. As much as 18 epistatic QTL were found for NBA (four at P < 0.01 and five at P < 0.05) and TNB (three at P < 0.01 and six at P < 0.05), respectively. These epistatic QTL were distributed in multiple genomic regions, which covered 13 of the 18 pig autosomes, and they had small individual effects that ranged between 3 to 4% of the phenotypic variance. Different patterns of interactions (a × a, a × d, d × a and d × d) were found amongst the epistatic QTL pairs identified in the current work.Conclusions: The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17), dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the genetic background where they segregate.
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
Dialogic learning and interactive groups have proved to be a useful methodological approach appliedin educational situations for lifelong adult learners. The principles of this approach stress theimportance of dialogue and equal participation also when designing the training activities. This paperadopts these principles as the basis for a configurable template that can be integrated in runtimesystems. The template is formulated as a meta-UoL which can be interpreted by IMS Learning Designplayers. This template serves as a guide to flexibly select and edit the activities at runtime (on the fly).The meta-UoL has been used successfully by a practitioner so as to create a real-life example, withpositive and encouraging results
Resumo:
The emergence of the Web 2.0 technologies in the last years havechanged the way people interact with knowledge. Services for cooperation andcollaboration have placed the user in the centre of a new knowledge buildingspace. The development of new second generation learning environments canbenefit from the potential of these Web 2.0 services when applied to aneducational context. We propose a methodology for designing learningenvironments that relates Web 2.0 services with the functional requirements ofthese environments. In particular, we concentrate on the design of the KRSMsystem to discuss the components of this methodology and its application.