705 resultados para applied learning educators
Resumo:
This book examines the intricacies of the discourse of post-observation feedback that student teachers receive following group teaching practice. In particular, the author explores confirmatory feedback as an instigator of student teacher learning, and examines the potential links between feedback and change. The book will be of specific interest to researchers, teacher educators and other professionals involved in feedback-giving settings.
Resumo:
Right across Europe technology is playing a vital part in enhancing learning for an increasingly diverse population of learners. Learning is increasingly flexible, social and mobile and supported by high quality multi-media resources. Institutional VLEs are seeing a shift towards open source products and these core systems are supplemented by a range of social and collaborative learning tools based on web 2.0 technologies. Learners undertaking field studies and those in the workplace are coming to expect that these off-campus experiences will also be technology-rich whether supported by institutional or user-owned devices. As well as keeping European businesses competitive, learning is seen as a means of increasing social mobility and supporting an agenda of social justice. For a number of years the EUNIS E-Learning Task Force (ELTF) has conducted snapshot surveys of e-learning across member institutions, collected case studies of good practice in e-learning see (Hayes, et al., 2009) in references, supported a group looking at the future of e-learning, and showcased the best of innovation in its e-learning Award. Now for the first time the ELTF membership has come together to undertake an analysis of developments in the member states and to assess what this might mean for the future. The group applied the techniques of World Café conversation and Scenario Thinking to develop its thoughts. The analysis is unashamedly qualitative and draws on expertise from leading universities across eight of the EUNIS member states. What emerges is interesting in terms of the common trends in developments in all of the nations and similarities in hopes and concerns about the future development of learning.
Resumo:
Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.
Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.
Resumo:
This paper is a case study that describes the design and delivery of national PhD lectures with 40 PhD candidates in Digital Arts and Humanities in Ireland simultaneously to four remote locations, in Trinity College Dublin, in University College Cork, in NUI Maynooth and NUI Galway. Blended learning approaches were utilized to augment traditional teaching practices combining: face-to-face engagement, video-conferencing to multiple sites, social media lecture delivery support – a live blog and micro blogging, shared, open student web presence online. Techniques for creating an effective, active learning environment were discerned via a range of learning options offered to students through student surveys after semester one. Students rejected the traditional lecture format, even through the novel delivery method via video link to a number of national academic institutions was employed. Students also rejected the use of a moderated forum as a means of creating engagement across the various institutions involved. Students preferred a mix of approaches for this online national engagement. The paper discusses successful methods used to promote interactive teaching and learning. These included Peer to peer learning, Workshop style delivery, Social media. The lecture became a national, synchronous workshop. The paper describes how allowing students to have a voice in the virtual classroom they become animated and engaged in an open culture of shared experience and scholarship, create networks beyond their institutions, and across disciplinary boundaries. We offer an analysis of our experiences to assist other educators in their course design, with a particular emphasis on social media engagement.
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.
Resumo:
The ‘Intersections: Youth Work and Music Education’ Symposium took place on Friday, 27th June 2014 in University College Cork. This event, held in association with the Institute of Social Sciences in the 21st Century (ISS21), was made possible thanks to funding from UCC’s Strategic Research Fund. The principle aim of this seed funding is to generate new research interests and this presented the ideal opportunity for developing collaborative relationships between youth work and music education lecturers, researchers and practitioners across the island of Ireland. This led to the formation of a new ‘Intersections’ research cluster, comprising representatives from four third-level institutions, each of which offers both youth work and music education undergraduate and/or postgraduate programmes, namely: University College Cork; National University of Ireland, Maynooth; Dundalk Institute of Technology; and, University of Ulster. This document presents some preliminary findings from primary research conducted through each of the participating institutions in their local areas. Data was also collected during the symposium, through engaging in small group discussions populated by the event’s participants. The publication and dissemination of this document was included in the original Strategic Research Fund proposal. Its intended audience includes youth workers, music educators, community-based practitioners, policy-makers and academics who are motivated and enthused by the possibilities of music-oriented youth work in Ireland and beyond.
Resumo:
This dissertation includes two studies. Study 1 is a qualitative case study that describes enactment of the main components of a high fidelity Full-Day Early Learning Kindergarten (FDELK) classroom, specifically play-based learning and teacher-ECE collaboration. Study 2 is a quantitative analysis that investigates how effectively the FDELK program promotes school readiness skills, namely self-regulation, literacy, and numeracy, in Kindergarteners. To describe the main components of an FDELK classroom in Study 1, a sub-sample of four high fidelity case study schools were selected from a larger case study sample. Interview data from these schools’ administrators, educators, parents, and community stakeholders were used to describe how the main components of the FDELK program enabled educators to meet the individual needs of students and promote students’ SR development. In Study 2, hierarchical regression analyses of 32,207 students’ self-regulation, literacy, and numeracy outcomes using 2012 Ontario Early Development Instrument (EDI) data revealed essentially no benefit for students participating in the FDELK program when compared to peers in Half-Day or Alternate-Day Kindergarten programs. Being older and female predicted more positive SR and literacy outcomes. Age and gender accounted for limited variance in numeracy outcomes. Results from both studies suggest that the Ontario Ministry of Education should take steps to improve the quality of the FDELK program by incorporating evidence-based guidelines and goals for play, reducing Kindergarten class sizes to more effectively scaffold learning, and revising curriculum expectations to include a greater focus on SR, literacy, and numeracy skills.
Resumo:
In our daily lives, we often must predict how well we are going to perform in the future based on an evaluation of our current performance and an assessment of how much we will improve with practice. Such predictions can be used to decide whether to invest our time and energy in learning and, if we opt to invest, what rewards we may gain. This thesis investigated whether people are capable of tracking their own learning (i.e. current and future motor ability) and exploiting that information to make decisions related to task reward. In experiment one, participants performed a target aiming task under a visuomotor rotation such that they initially missed the target but gradually improved. After briefly practicing the task, they were asked to select rewards for hits and misses applied to subsequent performance in the task, where selecting a higher reward for hits came at a cost of receiving a lower reward for misses. We found that participants made decisions that were in the direction of optimal and therefore demonstrated knowledge of future task performance. In experiment two, participants learned a novel target aiming task in which they were rewarded for target hits. Every five trials, they could choose a target size which varied inversely with reward value. Although participants’ decisions deviated from optimal, a model suggested that they took into account both past performance, and predicted future performance, when making their decisions. Together, these experiments suggest that people are capable of tracking their own learning and using that information to make sensible decisions related to reward maximization.
Resumo:
The use of serious games in education and their pedagogical benefit is being widely recognized. However, effective integration of serious games in education depends on addressing two big challenges: the successful incorporation of motivation and engagement that can lead to learning; and the highly specialised skills associated with customised development to meet the required pedagogical objectives. This paper presents the Westminster Serious Games Platform (wmin-SGP) an authoring tool that allows educators/domain experts without games design and development technical skills to create bespoke roleplay simulations in three dimensional scenes featuring fully embodied virtual humans capable of verbal and non-verbal interaction with users fit for specific educational objectives. The paper presents the wmin-SGP system architecture and it evaluates its effectiveness in fulfilling its purpose via the implementation of two roleplay simulations, one for Politics and one for Law. In addition, it presents the results of two types of evaluation that address how successfully the wmin-SGP combines usability principles and game core drives based on the Octalysis gamification framework that lead to motivating games experiences. The evaluation results shows that the wmin-SGP: provides an intuitive environment and tools that support users without advanced technical skills to create in real-time bespoke roleplay simulations in advanced graphical interfaces; satisfies most of the usability principles; and provides balanced simulations based on the Octalysis framework core drives. The paper concludes with a discussion of future extension of this real time authoring tool and directions for further development of the Octalysis framework to address learning.
Resumo:
Computer games have now been around for over three decades and the term serious games has been attributed to the use of computer games that are thought to have educational value. Game-based learning (GBL) has been applied in a number of different fields such as medicine, languages and software engineering. Furthermore, serious games can be a very effective as an instructional tool and can assist learning by providing an alternative way of presenting instructions and content on a supplementary level, and can promote student motivation and interest in subject matter resulting in enhanced learning effectiveness. REVLAW (Real and Virtual Reality Law) is a research project that the departments of Law and Computer Science of Westminster University have proposed as a new framework in which law students can explore a real case scenario using Virtual Reality (VR) technology to discover important pieces of evidence from a real-given scenario and make up their mind over the crime case if this is a murder or not. REVLAW integrates the immersion into VR as the perception of being physically present in a non-physical world. The paper presents the prototype framework and the mechanics used to make students focus on the crime case and make the best use of this immersive learning approach.
Resumo:
The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Formative assessment or assessment for learning is a relevant theme for teachers and educationalists. Formative assessment is a valuable tool for supporting the learning process. It is applied during learning and offers you more and better opportunities to guide your students. Formative assessment allows for more individual and/or personalised guidance. In this MOOC Assessment for learning in practice we will provide you with theory and guidelines for knowledge construction on the topic of formative assessment while offering support in designing assessments that can be applied as a tool for learning and training of competences. In this MOOC you can learn what formative assessment is, learn to differentiate between summative and formative assessment, and how formative assessment can contribute to the learning of your pupils or students. Design of rubrics, the role and functions of feedback, the use of technology for formative assessment are the topics of the MOOC.
Resumo:
Boot-Groenink, A. (2016). Het Effect van Formatief Gebruik van Rubrics op Transparantie, Zelfregulatie, Self-Efficacy en Prestatie bij Propedeusestudenten van Applied Science. juli, 12, 2016, Heerlen, Nederland: Open Universiteit.