863 resultados para amplificatore lock-in labview strumento misura segnali rumore energy gap
Resumo:
In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors. In these materials the weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities.rnThe contributions to the method development includern(i) the derivation of a bimolecular charge-transfer rate,rn(ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies,rn(iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energiesrnand (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies.These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED).rnWhen bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter.rnFurthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that a polarization-induced stabilization of a molecule in its charged and neutral states can lead to large shifts, broadening, and traps in the distribution of charge energies. These results are especially important for multi-component systems (the emission layer of an OLED or the donor-acceptor interface of an organic solar cell), if the change in polarizability upon charging (or excitation in case of energy transport) is different for the components. Thus, the polarizability change upon charging or excitation should be added to the set of molecular parameters essential for understanding charge and energy transport in organic semiconductors.rnWe also studied charge transport in self-assembled systems, where intermolecular packing motives induced by side chains can increase electronic couplings between molecules. This leads to larger charge mobility, which is essential to improve devices such as organic field effect transistors, where low carrier mobilities limit the switching frequency.rnHowever, it is not sufficient to match the average local molecular order induced by the sidernchains (such as the pitch angle between consecutive molecules in a discotic mesophase) with maxima of the electronic couplings.rnIt is also important to make the corresponding distributions as narrow as possible compared to the window determined by the closest minima of thernelectronic couplings. This is especially important in one-dimensional systems, where charge transport is limited by the smallest electronic couplings.rnThe immediate implication for compound design is that the side chains should assist the self-assemblingrnprocess not only via soft entropic interactions, but also via stronger specific interactions, such as hydrogen bonding.rnrnrnrn
Resumo:
Das wichtigste Oxidationsmittel für den Abbau flüchtiger Kohlenwasserstoffverbindungen (VOC, engl.: volatile organic compounds) in der Atmosphäre ist das Hydroxylradikal (OH), welches sich in einem schnellen chemischen Gleichgewicht mit dem Hydroperoxylradical (HO2) befindet. Bisherige Messungen und Modellvergleiche dieser Radikalspezies in Waldgebieten haben signifikante Lücken im Verständnis der zugrundeliegenden Prozesse aufgezeigt.rnIm Rahmen dieser Doktorarbeit wurden Messungen von OH- und HO2-Radikalen mittelsrnlaserinduzierten Fluoreszensmesstechnik (LIF, engl.: laser-induced fluorescence) in einem Nadelwald in Süd-Finnland während der Messkampagne HUMPPA–COPEC–2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) im Sommer 2010 durchgeführt. Unterschiedliche Komponenten des LIF-Instruments wurden verbessert. Eine modifizierte Methode zur Bestimmung des Hintergrundsignals (engl.: InletPreInjector technique) wurde in den Messaufbaurnintegriert und erstmals zur Messung von atmosphärischem OH verwendet. Vergleichsmessungen zweier Instrumente basierend auf unterschiedlichen Methoden zur Messung von OH-Radikalen, chemische Ionisationsmassenspektrometrie (CIMS - engl.: chemical ionization mass spectrometry) und LIF-Technik, zeigten eine gute Übereinstimmung. Die Vergleichsmessungen belegen das Vermögen und die Leistungsfähigkeit des modifizierten LIF-Instruments atmosphärische OH Konzentrationen akkurat zu messen. Nachfolgend wurde das LIF-Instrument auf der obersten Plattform eines 20m hohen Turmes positioniert, um knapp oberhalb der Baumkronen die Radikal-Chemie an der Schnittstelle zwischen Ökosystem und Atmosphäre zu untersuchen. Umfangreiche Messungen - dies beinhaltet Messungen der totalen OH-Reaktivität - wurden durchgeführt und unter Verwendung von Gleichgewichtszustandsberechnungen und einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, analysiert. Wenn moderate OH-Reaktivitäten(k′(OH)≤ 15 s−1) vorlagen, sind OH-Produktionsraten, die aus gemessenen Konzentrationen von OH-Vorläuferspezies berechnet wurden, konsistent mit Produktionsraten, die unter der Gleichgewichtsannahme von Messungen des totalen OH Verlustes abgeleitet wurden. Die primären photolytischen OH-Quellen tragen mit einem Anteil von bis zu einem Drittel zur Gesamt-OH-Produktion bei. Es wurde gezeigt, dass OH-Rezyklierung unter Bedingungen moderater OH-Reaktivität hauptsächlich durch die Reaktionen von HO2 mit NO oder O3 bestimmt ist. Während Zeiten hoher OH-Reaktivität (k′(OH) > 15 s−1) wurden zusätzliche Rezyklierungspfade, die nicht über die Reaktionen von HO2 mit NO oder O3, sondern direkt OH bilden, aufgezeigt.rnFür Hydroxylradikale stimmen Boxmodell-Simulationen und Messungen gut übereinrn(OHmod/OHobs=1.04±0.16), während HO2-Mischungsverhältnisse in der Simulation signifikant unterschätzt werden (HO2mod/HO2obs=0.3±0.2) und die simulierte OH-Reaktivität nicht mit der gemessenen OH-Reaktivität übereinstimmt. Die gleichzeitige Unterschätzung der HO2-Mischungsverhältnisse und der OH-Reaktivität, während OH-Konzentrationen von der Simulation gut beschrieben werden, legt nahe, dass die fehlende OH-Reaktivität in der Simulation eine noch unberücksichtigte HO2-Quelle darstellt. Zusätzliche, OH-unabhängigernRO2/HO2-Quellen, wie z.B. der thermische Zerfall von herantransportiertem peroxyacetylnitrat (PAN) und die Photolyse von Glyoxal sind indiziert.
Resumo:
Graphene, the thinnest two-dimensional material possible, is considered as a realistic candidate for the numerous applications in electronic, energy storage and conversion devices due to its unique properties, such as high optical transmittance, high conductivity, excellent chemical and thermal stability. However, the electronic and chemical properties of graphene are highly dependent on their preparation methods. Therefore, the development of novel chemical exfoliation process which aims at high yield synthesis of high quality graphene while maintaining good solution processability is of great concern. This thesis focuses on the solution production of high-quality graphene by wet-chemical exfoliation methods and addresses the applications of the chemically exfoliated graphene in organic electronics and energy storage devices.rnPlatinum is the most commonly used catalysts for fuel cells but they suffered from sluggish electron transfer kinetics. On the other hand, heteroatom doped graphene is known to enhance not only electrical conductivity but also long term operation stability. In this regard, a simple synthetic method is developed for the nitrogen doped graphene (NG) preparation. Moreover, iron (Fe) can be incorporated into the synthetic process. As-prepared NG with and without Fe shows excellent catalytic activity and stability compared to that of Pt based catalysts.rnHigh electrical conductivity is one of the most important requirements for the application of graphene in electronic devices. Therefore, for the fabrication of electrically conductive graphene films, a novel methane plasma assisted reduction of GO is developed. The high electrical conductivity of plasma reduced GO films revealed an excellent electrochemical performance in terms of high power and energy densities when used as an electrode in the micro-supercapacitors.rnAlthough, GO can be prepared in bulk scale, large amount of defect density and low electrical conductivity are major drawbacks. To overcome the intrinsic limitation of poor quality of GO and/or reduced GO, a novel protocol is extablished for mass production of high-quality graphene by means of electrochemical exfoliation of graphite. The prepared graphene shows high electrical conductivity, low defect density and good solution processability. Furthermore, when used as electrodes in organic field-effect transistors and/or in supercapacitors, the electrochemically exfoliated graphene shows excellent device performances. The low cost and environment friendly production of such high-quality graphene is of great importance for future generation electronics and energy storage devices. rn
Resumo:
In un sistema radar è fondamentale rilevare, riconoscere e cercare di seguire il percorso di un eventuale intruso presente in un’area di osservazione al fine ultimo della sicurezza, sia che si consideri l’ambito militare, che anche quello civile. A questo proposito sono stati fatti passi avanti notevoli nella creazione e sviluppo di sistemi di localizzazione passiva che possano rilevare un target (il quale ha come unica proprietà quella di riflettere un segnale inviato dal trasmettitore), in modo che esso sia nettamente distinto rispetto al caso di assenza dell’intruso stesso dall’area di sorveglianza. In particolare l’ultilizzo di Radar Multistatico (ossia un trasmettitore e più ricevitori) permette una maggior precisione nel controllo dell’area d’osservazione. Tra le migliori tecnologie a supporto di questa analisi vi è l’UWB (Ultra Wide-Band), che permette di sfruttare una banda molto grande con il riscontro di una precisione che può arrivare anche al centimetro per scenari in-door. L’UWB utilizza segnali ad impulso molto brevi, a banda larga e che quindi permettono una risoluzione elevata, tanto da consentire, in alcune applicazioni, di superare i muri, rimuovendo facilmente gli elementi presenti nell’ambiente, ossia il clutter. Quindi è fondamentale conoscere algoritmi che permettano la detection ed il tracking del percorso compiuto dal target nell’area. In particolare in questa tesi vengono elaborati nuovi algoritmi di Clustering del segnale ricevuto dalla riflessione sull’intruso, utilizzati al fine di migliorare la visualizzazione dello stesso in post-processing. Infine questi algoritmi sono stati anche implementati su misure sperimentali attuate tramite nodi PulsOn 410 Time Domain, al fine ultimo della rilevazione della presenza di un target nell’area di osservazione dei nodi.
Resumo:
This study seeks to address a gap in the study of nonviolent action. The gap relates to the question of how nonviolence is performed, as opposed to the meaning or impact of nonviolent politics. The dissertation approaches the history of nonviolent protest in South Asia through the lens of performance studies. Such a shift allows for concepts such as performativity and theatricality to be tested in terms of their applicability and relevance to contemporary political and philosophical questions. It also allows for a different perspective on the historiography of nonviolent protest. Using concepts, modes of analysis and tropes of thinking from the emerging field of performance studies, the dissertation analyses two different cases of nonviolent protest, asking how politics is performatively constituted. The first two sections of this study set out the parameters of the key terms of the dissertation: nonviolence and performativity, by tracing their genealogies and legacies as terms. These histories are then located as an intersection in the founding of the nonviolent. The case studies at the analytical core of the dissertation are: fasting as a method in Gandhi's political arsenal, and the army of nonviolent soldiers in the North-West Frontier Province, known as the Khudai Khidmatgar. The study begins with an overview of current theorisations of nonviolence. The approach to the subject is through an investigation of commonly held misconceptions about nonviolent action, such as its supposed passivity, the absence of violence, its ineffectiveness and its spiritual basis. This section addresses the lacunae within existing theories of nonviolence and points to possible fertile spaces for further exploration. Section 3 offers an overview of the different shades of the concept of performativity, asking how it is used in various contexts and how these different nuances can be viewed in relation to each other. The dissertation explores how a theory of performativity may be correlated to the theorisation of nonviolence. The correlations are established in four boundary areas: action/inaction, violence/absence of violence, the actor/opponent and the body/spirit. These boundary areas allow for a theorising of nonviolent action as a performative process. The first case study is Gandhi's use of the fast as a method of nonviolent protest. Using a close reading of his own writings, speeches and letters, as well as a reading of responses to his fast in British newspapers and within India, the dissertation asks what made fasting into Gandhi's most favoured mode of protest and political action. The study reconstructs his unique praxis of the fast from a performative perspective, demonstrating how display and ostentation are vital to the political economy of the fast. It also unveils the cultural context and historical reservoir of body practices, which Gandhi drew from and adapted into 'weapons' of political action. The relationship of Gandhian nonviolence to the body forms a crucial part of the analysis. The second case study is the nonviolent army of the Pashtuns, Khudai Khidmatgar (KK), literally Servants of God. This anti-imperialist movement in the North-West Frontier Province of what is today the border between Pakistan and Afghanistan existed between 1929 and 1948. The movement adopted the organisational form of an army. It conducted protest activities against colonial rule, as well as social reform activities for the Pashtuns. This group was connected to the Congress party of Gandhi, but the dissertation argues that their conceptualisation and praxis of nonviolence emerged from a very different tradition and worldview. Following a brief introduction to the socio-political background of this Pashtun movement, the dissertation explores the activities that this nonviolent army engaged in, looking at their unique understanding of the militancy of an unarmed force, and their mode of combat and confrontation. Of particular interest to the analysis is the way the KK re-combined and mixed what appear to be contradictory ideologies and acts. In doing so, they reframed cultural and historical stereotypes of the Pashtuns as a martial race, juxtaposing the institutional form of the army with a nonviolent praxis based on Islamic principles and social reform. The example of the Khudai Khidmatgar is used to explore the idea that nonviolence is not the opposite of violent conflict, but in fact a dialectical engagement and response to violence. Section 5, in conclusion, returns to the boundary areas of nonviolence: action, violence, the opponent and the body, and re-visits these areas on a comparative note, bringing together elements from Gandhi's fasts and the practices of the KK. The similarities and differences in the two examples are assessed and contextualised in relation to the guiding question of this study, namely the question of the performativity of nonviolent action.
Resumo:
Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.
Resumo:
A microfluidic Organ-on-Chip has been developed for monitoring the epithelial cells monolayer. Equivalent circuit Model was used to determine the electrical properties from the impedance spectra of the epithelial cells monolayer. Black platinum on platinum electrodes was electrochemically deposited onto the surface of electrodes to reduce the influence of the electrical double layer on the impedance measurements. Measurements of impedance with an Impedance Analyzer were done to validate the equivalent circuit model and the decrease of the double layer effect. A Lock-in Amplifier was designed to measure the impedance.
Resumo:
Per lo sviluppo di un modello realistico di formazione ed evoluzione delle galassie è necessario un confronto sistematico con le osservazioni in modo da verificare che i dati vengano ben riprodotti. Lo scopo che si prefigge questo lavoro di Tesi è un confronto tra le caratteristiche delle galassie presenti nei cataloghi simulati (mock), costruiti sulla base di alcuni modelli, e quelle evinte dai dati osservativi di campioni di galassie (surveys) con l'obbiettivo di far luce su quali siano le maggiori discrepanze e quindi sulla direzione in cui i modelli andrebbero perfezionati. Per far questo, si è scelto di far uso della funzione di massa stellare delle galassie (MF), in quanto strumento statistico più indicativo di una popolazione di galassie, considerando sia la totalità delle galassie, sia separatamente le star-forming e le quiescenti. Questo lavoro di Tesi attua un confronto tra le MF a 0<z<3 ricavate dalle osservazioni e quelle ottenute dai campioni di galassie simulate con i modelli teorici, per capire a quali redshift, a quali masse e per quali sottocampioni di galassie la riproduzione dei dati avviene in maniera migliore e dove invece risiedono i maggiori problemi. Si vede come le funzioni di massa cambino al variare del tasso di formazione stellare nei modelli e le differenze che vi sono nella loro distribuzione in base a colore e SFR. Infine si studia come varia col redshift la densità numerica delle galassie quiescenti osservate e teoriche di diversa massa. Anche questo tipo di confronto ha come scopo quello di sondare le differenze tra modelli ed osservazioni su quali siano le modalità e le tempistiche di evoluzione delle galassie a seconda della loro massa e su cosa sia quello che, dai modelli, costruiti sulla base dei processi fisici che conosciamo, non riesce ancora ad essere riprodotto.
Resumo:
Dual-energy CT provides information about how substances behave at different energies, the ability to generate virtual unenhanced datasets, and improved detection of iodine-containing substances on low-energy images. Knowing how a substance behaves at two different energies can provide information about tissue composition beyond that obtainable with single-energy techniques. The term K edge refers to the spike in attenuation that occurs at energy levels just greater than that of the K-shell binding because of the increased photoelectric absorption at these energy levels. K-edge values vary for each element, and they increase as the atomic number increases. The energy dependence of the photoelectric effect and the variability of K edges form the basis of dual-energy techniques, which may be used to detect substances such as iodine, calcium, and uric acid crystals. The closer the energy level used in imaging is to the K edge of a substance such as iodine, the more the substance attenuates. In the abdomen and pelvis, dual-energy CT may be used in the liver to increase conspicuity of hypervascular lesions; in the kidneys, to distinguish hyperattenuating cysts from enhancing renal masses and to characterize renal stone composition; in the adrenal glands, to characterize adrenal nodules; and in the pancreas, to differentiate between normal and abnormal parenchyma.
Resumo:
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.
Resumo:
Since the 1980s, the prevalence of obesity has more than doubled to over 30 percent of the adult population (Thorpe, 2004). Obesity is a key contributing factor to continually rising national healthcare costs. Addressing its negative implications is essential not only from a cost perspective, but also for the betterment of our nation¿s general health and wellbeing. Obesity is reportedly associated with a 35% increase in inpatient and outpatient spending, as well as a 77% increase in related necessary medications (Sturm, 2002). Obesity, which some have argued should be classified as a disease in itself, has roughly the same association with the development of chronic health conditions as does 20 years of aging (Sturm, 2002). Defined as ambulatory care-sensitive conditions, these obesity-related chronic health diagnoses ¿ like diabetes, cardiovascular disease, and hypertension ¿ are in turn the primary drivers of current healthcare spending, as well as future predicted health expenditures. It is well established that lower socioeconomic status (SES) is associated with higher rates of obesity and the subsequent development of aforementioned obesity-related conditions. Socioeconomic status has traditionally been defined by education, income, and occupation (Adler, 2002); however, this study found empirical evidence for education being the most fundamental of these three SES indicators in determining obesity outcomes. For both men and women, as education levels increased, the likelihood of an individual being obese decreased. However, with less education, there was increased disparity between the obesity rates for men and women. Women consistently saw higher rates of obesity and were more impacted in terms of obesity onset by belonging to a lower SES category than men. In addition, this study assessed whether the impact of one¿s socioeconomic status on obesity-related health outcomes (specifically the negative impact low-SES as measured by education level) has changed over time. Results deriving from annual data from the National Health Interview Survey (NHIS) for all years from 2002 to 2012 indicate that the association between low-socioeconomic status and negative health outcomes has not increased in magnitude over the past decade. Instead, obesity rates have increased across the overall U.S. adult population, most likely due to a number of larger external societal factors resulting in increased caloric intake and decreased energy expenditure across every SES group. In addition, while the association between low-SES and obesity has not worsened, a consequence of the Great Recession has been a larger percentage of the U.S. population in lower-SES, which is still consistently subject to the same worse health outcomes.
Resumo:
Psychogenetic research has emphasised the influence of social factors on a child's intellectual development. In her work, Ms. Dumitrascu examines two such factors; family size and order of birth. However, since these formal parameters tend to be unstable, other more informal factors should be taken into consideration. Of these, perhaps the most interesting is the "style" of parental education, which Ms. Dumitrascu regards as an expression of national traditions at the family level. This educational style is culture dependent. Only a comparative, cross-cultural study can reveal the real mechanism through which educational style influences the development of a child's intellect and personality. Ms. Dumitrascu conducted an experimental cross-cultural study aimed at examining the effects of the family environment on a child's intellectual development. Three distinct populations were involved in her investigation, each having quite a distinct status in their geographical area; Romanians, Romanies (Gypsies) from Romania, and Russians from the Republic of Moldova. She presented her research in the form of a series of articles written in English totalling 85 pages, and also on disc. A significant difference was revealed between the intelligence of a child living in a large family, and that of a child with no brothers or sisters. In the case of Romany children, the gap is remarkably large. Ms. Dumitrascu concludes that the simultaneous action of several negative factors (low socio-economic status, large family size, socio-cultural isolation of a population) may delay child development. Subjected to such a precarious environment, Romany children do not seek self-realisation, but rather struggle to survive the hardship. Most of them remain out of civilisation. Unfortunately, adult Romanies seldom express any concern regarding their children's successful social integration. The school as main socialisation tool has no value for most parents. Ms. Dumitrascu argues the need for a major effort aimed at helping Romany's social integration. She hopes this project will be of some help for psychologists, social workers, teachers, and all those who are interested in the integration into society of minority groups.