955 resultados para ZrO2 thin film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2采用X射线衍射(XRD)技术分析了不同充氧条件和沉积温度对ZrO2溥膜组成结构的影响,并对不同工艺下制备的薄膜的表面粗糙度和激光损伤阈值进行了测量。结果发现随着氧压的升高,ZrO2溥膜将由单斜相多晶态逐渐转变为非晶态结构,而随着基片温度的增加,溥膜将由非晶态逐渐转变为单斜相多晶态。同时发现随着氧压升高晶粒尺寸减小,而随着沉积温度增加,晶粒尺寸增大。氧压增加时工艺对表面粗糙度有一定程度的改善,而沉积温度升高,工艺对表面粗糙度的改善不明显。晶粒尺寸大小变化与表面粗糙度变化存在对应关系。激光损伤测量表明

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress is inevitable during thin film growth. It is demonstrated here that the growth stress has a significant effect on the dielectric constant of high-k thin films. ZrO2 thin films were deposited on Ge by reactive direct current sputtering. Stress in these films was measured using in-situ curvature measurement tool. The growth stress was tuned from -2.8 to 0.1 GPa by controlling deposition rate. Dielectric permittivity of ZrO2 depends on temperature, phase, and stress. The correct combination of parameters-phase, texture, and stress-is shown to yield films with an equivalent oxide thickness of 8 angstrom. Growth stresses are shown to affect the dielectric constant both directly by affecting lattice parameter and indirectly through the effect on phase stability of ZrO2. (c) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y(0c) at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y(0c) with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H* , the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymeric supramolecule consisting of symmetric polystyrene-block-poly(4-vinylpytidine) (PS-b-P4VP), dodecylbenzenesulfonic acid (DBSA), and 3-pentadecylphenol (PDP) was formed by proton transfer and hydrogen bonding. The surface morphology,of a thin film of the polymeric supramolecule has been investigated. The spherical PS microdomains embedded in a P4VP(DBSA)(1.0)(PDP)(1.0) matrix are observed for the as-cast film because the weight fraction, f(comb), of the P4VP(DBSA) (1.0)(PDP)(1.0) blocks is much higher than that of PS as a result of the non-covalent interactions of P4VP and DBSA and DBSA and PDR Upon annealing the PS-b-P4VP(1:1)(DBSA)(1.0)(PDP)(1.0) film at high temperatures, the hydrogen bonding between the DBSA and PDP diminishes, which leads to a change of overall morphology from an ordered sphere to a pitted structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general method of preparation of thin-film sensors for O-2, incorporating the dye ion-pair tris(4,7-diphenyl-1,10-phenanthroline) rutheninm(II) ditetraphenylborate, in a variety of different thin film polymer/plasticizer matrices is described, The sensitivity of the sensor depends upon the nature of the polymer matrix and plasticizer, A detailed study of one of these systems utilising the polymer poly(methyl methacrylate), PMMA, is reported. The sensitivity of this O-2 sensor depends markedly upon the plasticizer concentration and is largely independent of temperature (24,5-52.5 degrees C) and age (up to 30 d), When exposed to an alternating atmosphere of O-2 and N-2, a typical oxygen film sensor in PMMA exhibits a 0-90% response and recovery time of 0.4 and 4.5 s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of thin film drainage models is presented in which the predictions of thinning velocities and drainage times are compared to reported values on foam and emulsion films found in the literature. Free standing films with tangentially immobile interfaces and suppressed electrostatic repulsion are considered, such as those studied in capillary cells. The experimental thinning velocities and drainage times of foams and emulsions are shown to be bounded by predictions from the Reynolds and the theoretical MTsR equations. The semi-empirical MTsR and the surface wave equations were the most consistently accurate with all of the films considered. These results are used in an accompanying paper to develop scaling laws that bound the critical film thickness of foam and emulsion films. (c) 2005 Elsevier B.V. All rights reserved.